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1 Introduction

What is the relationship between the Second Law of Thermodynamics and the
approach to equilibrium of mechanical systems? This deep question has per-
meated science for over a century, yet is still poorly understood. Particularly
obscure is the connection between the way the question is traditionally analysed
at different levels of mathematical modelling, for example those of classical and
quantum particle mechanics, statistical physics and continuum mechanics.

In this article I make some remarks, and discuss examples, concerning one
part of the picture, the justification of variational principles for dynamical sys-
tems (especially in infinite dimensions) endowed with a Lyapunov function. For
dynamical systems arising from physics the Lyapunov function will typically
have a thermodynamic interpretation (entropy, free energy, availability), but its
origin will not concern us here. Modern continuum thermomechanics provides
such Lyapunov functions for general deforming materials as a consequence of
assumed statements of the Second Law such as the Clausius-Duhem inequality
(c.f. Coleman & Dill [18], Duhem [20], Ericksen [21], Ball & Knowles [12]). By
contrast, statistical physics provides Lyapunov functions only for very special
materials (the paradigm being the H-functional for the Boltzmann equation,
which models a moderately rarified monatomic gas).

Let T'(t),s, be a dynamical system on some (say, topological) space X. Thus
(3) T(0) = identity, (it) T(s +t) = T(s)T(¢) for all s,¢ > 0, and (iii) the map-
ping (¢, ) +— T(t)p is continuous. We suppose that T'(t),,, is endowed with a
continuous Lyapunov function V : X — R, that is V(T'(f)¢) is nonincreasing
on [0,00) for each ¢ € X. (In some situations variations on these assumptions
would be appropriate; for example, solutions may not be unique or always glob-
ally defined.) The central conjecture is that if t; — oo then T'(tj)p will be a
minimizing sequence for V. If true, this would give a dynamical justification
for the variational principle:

Minimize V. (1.1)



What are the obstacles to making this more precise? First, there may exist
constants of motion that force the solution T'(t)¢ to remain on some subman-
ifold. These constants of motion must be incorporated as constraints in the
variational principle. For example, if the constants of motion are ¢; : X — R,
1=1,...,N, so that

c;(T(t)e) = ci(p) forallt>0,i=1,...,N, (1.2)

then the modified variational principle would be

c.-(l:lﬁl)l.—l.la.- V(¢) ’ (1.3)

i=1,..,N
where the «; are constants. Second, there may be points ¢ € X which are
local minimizers (in some sense) but not absolute minimizers of V, so that an
appropriate definition of a ‘local minimizing sequence’ is needed. Third, the
conjecture is false for initial data ¢ belonging to the region of attraction of a
rest point that is not a local minimizer of V'; such exceptional initial data must
somehow be excluded. Fourth, the minimum of V may not be attained, render-
ing even more problematical a good definition of a local minimizing sequence
(c.f. Ball [4]). We are thus searching for a result (applying to a general class of
dynamical systems, or to interesting examples) of the type:

Prototheorem For most initial data ¢, and any sequence t; — oo,
T(t;)p is a local minimizing sequence for V subject to appropriate constrainis.

The trivial one-dimensional example in Figure 1 illustrates a further dif-
ficulty. In the example there are three critical points A,B,C. The Lyapunov
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Figure 1:

function V is the vertical coordinate. There is clearly no nontrivial constant of
motion, since such a function would have to be constant on the closed intervals



[A,B] and [B,C]. Yet for any ¢ € [A,B] the solution tends as t — oo to a rest
point which is not a local minimizer of V. One could have at least three reac-
tions to this example (i) that staying in the invariant region [A,B] should be
incorporated as a constraint in the variational principle, (i) that the example
is not generic, because the rest point B is not hyperbolic, or (#ii) that stochastic
effects should be introduced so that the upper orbit can get through the barrier
at B. For, example, taking the point of view (ii), a version of the prototheorem
can be proved for an ordinary differential equation in R”.

Theorem 1 Consider the equation
z = f(z), zeR", (1.4)

where f : R® — R™ is C'. Suppose that there exists a continuous Lyapunov
function V : R® — R for (1.4) satisfying

lim V(z) = oo, (1.5)

Je]—o0
and such that if z is a solution of (1.4) with V(z(t)) =const. for allt > 0 then =
is a rest point. Suppose further that there are just a finite number of rest points
a;, i=1,...,N of (1.4), and that they are each hyperbolic. Then the union of
the regions of attraction of the local minimizers of V in R™ is open and dense.

Proof. I sketch the standard argument. By (1.5) each solution z(t) is
bounded for ¢ > 0, so that by the invariance principle (Barbashin & Krasovskii
[14], LaSalle [25]) z(t) — a; as t — oo for some i. Thus

N
R" = | A(a:), (1.6)
i=1

where A(a;) denotes the region of attraction of a;. But a hyperbolic rest point
a; is stable if and only if it is a local minimizer of V', while if a; is unstable then
A(a;) is closed and nowhere dense. o

Note that from (1.6) it follows that under the hypotheses of Theorem 1 there
is no nontrivial continuous constant of motion ¢ : R” — R.

Similar results to Theorem 1 can be proved for some classes of (especially
semilinear) partial differential equations by combining the invariance principle
with linearization (c.f. Hale [23], Henry [24], Dafermos [19], Ball [6,5]), provided
the set of rest points is, in an appropriate sense, hyperbolic. However, many
interesting examples lie well outside the scope of these results, and no version
of the prototheorem of wide applicability is known to me.

The work of Carr & Pego [16] on the Ginzburg-Landau equation with small
diffusion shows that, even when the prototheorem holds, solutions may in prac-
tice take an extremely long time to approach their asymptotic state, getting
stuck along the way in metastable states that are not close to local minimizers.



2 Two variational problems of elasticity

The examples in this section illustrate some of the features described in Sec-
tion 1. In the first there are nontrivial constants of motion, while in the second
the minimum is not attained.

Example 2.1. (The pure traction problem of thermoelasticily)

Consider a thermoelastic body in free space, occupying in a reference config-
uration a bounded domain Q C R3. It is assumed that the external body force
and volumetric heat supply are zero, that there are no applied surface forces,
and that the boundary of the body is insulated. Let y = y(z,t) € R3 denote
the position at time ¢ of the particle at £ € Q in the reference configuration,
v & y(z,t) the velocity, € = €(z,t) the internal energy density, and pgr = pr(z)
the given density in the reference configuration. Then the balance laws of linear
momentum, angular momentum and energy imply that

d
a/ﬂpnvdz-o, (2.1)
-‘1/ Avde =0 (2.2)
dt npRy - % .
d 1, .
— - = 2.
dt/npR(e+2|v|)dz 0, (2.3)

respectively, while as a consequence of the Clausius-Duhem inequality we have
that

—d—/ —pr1)(z, Dy, €)dz <0, (2.4)
dt Jo

where 7 denotes the entropy density and Dy the gradient of y. It is assumed
that n is frame indifferent, that is

n(z, RA,€) = n(z, A, €) (2.5)

for all z, A, ¢ and all R € SO(3). By changing to centre of mass coordinates we
may assume that

/npRy de =0, /f;pm) dz =0. (2.6)

This motivates the variational principle

Minimize / —pr1(z, Dy, €)dz 2.7
Q



subject to the constraints

1
[onte+510Mds=a, (28)
Q
/ prydz =0, / prvdz =0, (2.9)
a a
/ PRYAvdz = b, (2.10)
Q

where o € R and b € R3 are constant.

The minimization problem (2.7)-(2.10) has recently been studied by Lin [26],
who proved that under reasonable polyconvexity and growth conditions on n the
minimum is attained at some state (7,v,€). Of course ¥, v, are functions of
z alone. As a consequence of (2.5), the minimization problem is invariant to
the transformation (y,v,€) — (Ry, Rv, ¢) for any R € SO(3) satisfying Rb = b.
Hence, for any such R, (Ry, R7, €) is also a minimizer. In fact it is proved in [26]
that for any minimizer (7,7, €) there exists a skew matrix A such that Ab = b,
7 = AY, and such that

y(z,1) = *5(z) (2.11)
e(z,t) = &(z) (2.12)

is a weak solution of the equations of motion. Furthermore

%g(z’ Dy(‘”’t)’ f(mat)) =6 (2’13)

for all ¢, where § is a constant. The motion (2.11), (2.12) corresponds to a rigid
rotation at constant temperature #. Note that in this example the Lyapunov
function V' is constant along nontrivial orbits, such as that given by (2.13). In
particular, solutions to the dynamic equations need not tend to a rest point as
time ¢ — oo.

Example 2.2. (A theory of crystal microstructure)

Consider an elastic crystal, occupying in a reference configuration a bounded
domain @ C R?2 with sufficiently smooth boundary Q. Assume that part of
the boundary 9%, is maintained at a constant temperature 6y and at a given
deformed position

y|an =Y, (214)

where ¥ = ¥(-), while the remainder of the boundary is insulated and traction
free. Then an argument similar to that in Example 2.1, but using a different
Lyapunov function, the availability, motivates the variational principle

Minimize /‘; W(Dy(x)) dz (2.15)



subject to
Yloa =¥, (2.16)

where W is the Helmholtz free energy at temperature 8y (see Ericksen [21], Ball
[3].) It is supposed that W is frame indifferent, i.e.

W(RA) = W(A) (2.17)

for all A in the domain of W and all R € SO(3). In addition to (2.17), W has
other symmetries arising from the crystal lattice structure, as a consequence of
which W is nonelliptic. This lack of ellipticity implies in turn that the minimum
in (2.15),(2.16) is in general not attained in the natural spaces of admissible map-
pings. In this case, in order to get closer and closer to the infimum of the energy
it is necessary to introduce more and more microstructure. Such microstruc-
ture is frequently observed in optical and electron micrographs, where one may
see multiple interfaces (occurring, for example, in the form of very fine parallel
bands), each corresponding to a jump in Dy. The observed microstructure is
not, of course, infinitely fine, as would be predicted by the model here. The
conventional explanation for this is that one should incorporate in the energy
functional contributions due to interfacial energy; this should predict a limited
fineness and impose additional geometric structure (c.f.Parry [29], Fonseca [22]).
Since the interfacial energy is very small (witness the large amount of surface
observed) it is a reasonable expedient to ignore it, and in fact this successfully
predicts many features of the observed microstructure (see Ball & James [10],
Chipot & Kinderlehrer [17]). An example in which the nonattainment of a min-
imum can be rigorously established is the following (a special case of a result of
Ball & James [11]). Let W > 0 with W(A) = 0 if and only if A € M, where

M = S0(3)S* U SO(3)S~, (2.18)

where
St =1+68es5Qe;, (2.19)

and where § > 0 and {ei, e3,€e3} is an orthonormal basis of R3. Suppose that
oYy = 00 and that

¥ =St +(1-1)S57)=, A€ (0,1). (2.20)

Then under some technical hypotheses it is proved in [11] that the infimum of
(2.15) subject to (2.16) is zero, and that if y\) is a minimizing sequence then
the Young measure corresponding to Dy() is unique and given by

Ve = Abs+ + (1 — A)bs-, for a.e. z € Q. (2.21)

In particular, because v, is not a Dirac mass a.e., it follows that the minimmum
is not attained. The minimizing set M in (2.18) occurs, for example, in the case
of an orthorhombic to monoclinic transformation.



It would be very interesting to carry out a dynamical analysis corresponding
to the above variational problem, to see if the dynamics produces minimiz-
ing sequences with microstructure after the fashion of the prototheorem. This
could lead to important insight into a controversial area of metallurgy, that of
martensitic nucleation.

3 Some dynamical examples

In this section some infinite-dimensional problems are discussed for which the
prototheorem can either be proved or, in the case of Example 3.2, related infor-
mation obtained.

Example 3.1. (Stabilization of a rod using the azial force as a control)
The problem of feedback stabilization of an elastic rod using the axial force
as a control leads to the initial-boundary value problem

1
Ugy + Uppzs + (/ u,,utd:c) Ugy =0, 0<z<l, (3.1)
0
U= Upy =0, z=0,1, (3.2)
u(z,0) = uo(z), u(z,0)=u(x), 0<z<l. (3.3)

Here u(z,t) denotes the transverse displacement of the rod, while the boundary
conditions (3.2) correspond to the case of simply supported ends. This and
similar problems were formulated and analyzed in Ball & Slemrod [13]. Using
the Lyapunov function

W0=A%@%WLN% (3.4)

which has time derivative

2

vm=—(£2nma), (3.5)

it was proved that if {uo, u} € X % (H2(0,1) N H}(0,1)) x L?(0,1) then the

unique weak solution {u,u;} of (3.1)-(3.3) satisfies
{u,us} — {0,0} weaklyin X ast — oo. (3.6)

Considered as a functional on X, V has only one critical point {0,0}, which is
an absolute minimizer. The conclusion of the prototheorem therefore holds if
and only if

{u,u:} — {0,0} strongly in X as ¢t — oo. 3.7
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This has recently been proved by Miiller [28] by means of a delicate analysis of
the infinite system of ordinary differential equations satisfied by the coefficients
u;(t) of the Fourier expansion

u(z,t) = Y u;(t)sin(jrz) (3.8)
ji=1

of a solution. Miiller also established the interesting result that given any con-
tinuous function g : [0,00) — (0,00) with lim;—.og(t) = 0 there exists initial
data {uo, u1} € X such that the solution of (3.1)-(3.3) satisfies

V(t) > Cy(t) (3.9)

for all ¢ > 0 and some constant C' > 0. Thus solutions may have an arbitrary
slow rate of decay as ¢ — oo. It is an open question whether strong convergence
holds for the case of clamped ends

u=u; =0 at ¢ =0,1, (3.10)
or for various other feedback stabilization problems for which the analogue of

(3.6) was established in [13].

Example 3.2. (Phase transitions in one-dimensional viscoelasticity)
Consider one-dimensional motion of a viscoelastic rod. The equation of
motion 1s taken to be

Uy = (0(ug) + Ugt) 2, O<e<l, (3.11)
with boundary conditions
u=0atz=0, ouz)tux=0atz=1, (3.12)

and initial conditions

u(z,0) = uop(z), ui(z,0) = uy(x), 0<z<1. (3.13)
For simplicity, assume that
o(uz) =W (uy), Wug) = (u—-1)>2 (3.14)
Let 1
V(u,p) = /0 [§p2 + W (us)] dz. (3.15)

Then V(u,u;) is a Lyapunov function for (3.11)-(3.13) with time derivative

) 1
Viu,ue) = ——/ ul, dz < 0. (3.16)
0



1"

The corresponding variational problem

MinV,

X
where X = {{u,p} : u € W1>(0,1), u(0) = 0, p € L?(0,1)} has uncountably
many absolute minimizers, given by any pair {4,0} € X with u, = £1 ae..
In particular it is easily proved that given any smooth function v on [0,1] with
v(0) = 0 and | ¢/ |< 1, there exists a sequence {u(/),0} of absolute minimiz-
ers such that () 2 v in W1°°(0,1). This raises the interesting question as
to whether a solution {u,u;} to (3.11)-(3.13) could exhibit similar behaviour,
converging weakly but not strongly to a pair {v,0} which is not a rest point.
This question was resolved by Pego [30], following earlier work of Andrews &
Ball [1]. Pego showed that for any solution {u,u;}, as t — oo,

u(-,t) — v(’) strongly in W1P(0,1), (3.18)
ug(-, ) = 0 strongly in W12(0,1), (3.19)
for all p > 1, where {v,0} is a rest point of (3.11)-(3.13). Thus solutions
to the dynamical equations do not mimic the typical behaviour of minimizing

sequences. The results of Pego do not seem, however, to be sufficient to establish
whether or not a version of the prototheorem holds.

(3.17)

Example 3.3. (The Becker-Doring cluster equations)
These are the infinite set of ordinary differential equations

b = Jra(e®) = Ir(clt), 722,

(3.20)
¢ = =Jie(t)) = D Jr (c(2)),
r=1
where c(t) denotes the infinite vector (e.(2)),
Jr(e) = arerer — bryrcrt1, (3.21)

and the coefficients a, > 0, b, > 0 are constant. The physical significance of
(3.20) is discussed in the article in this volume by Carr [15).

Let X = {y= () : |yl| & Yore 7| yr |[<o0}. X is a Banach space
with the indicated norm. Solutions of (3.20) are sought as continuous functions
¢:[0,00) = X, where

Xt={yeX:4 20, r=12..} (3.22)
The system (3.20) possesses the Lyapunov function

Vie) = Zc, (ln ( Qr) ) (3.23)
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where Q1 = 1, Qr4+1/@r = ar/br41, and there is a constant of motion, the
density

o0
p= Erc,.. (3.24)

r=1
For suitable coefficients a,,b, there exists p, > 0 such that there is a unique
rest point ¢(?) of (3.20) with density p for p € [0, p,], and no rest point with
any density p > p,. Furthermore ¢{?) is the unique absolute minimizer of the

problem
Minimize Vie).
ceXt, T2 e = p

The equations (3.20) were analyzed in Ball, Carr & Penrose (8], Ball & Carr
[7}); see also Ball [2] for remarks on the variational problem (3.25). It follows
from [8],{7] that under suitable hypotheses on the a,,b, the conclusion of the
prototheorem holds. That is, given ¢(0) € X+ with 3,2, re.(0) = p, and any
sequence t; — oo, ¢(t;) is a minimizing sequence for (3.25). Note that this
conclusion holds even in the case p > p,, when the minimum in (3.25) is not
attained.

(3.25)

Example 3.4. (Model equations related to phase transitions in solids)

In Example 3.2, the Lyapunov function V given by (3.15) has minimizing
sequences that oscillate more and more finely, converging weakly to a state that
is not a minimizer. On the other hand there are minimizing sequences which
do not behave like this, consisting, for example, of a single minimizer. The
results of Pego show that the dynamics chooses to imitate the latter kind of
minimizing sequence rather than the former. In the crystal problem described
in Example 2.2 minimizing sequences are forced to oscillate more and more
finely, leading to interesting possibilities for a corresponding dynamical model.
Does the dynamics imitate the minimizing sequences, or is it still the case that
all solutions tend to equilibria? This is a formidable problem, so it makes sense
to first try out some one-dimensional examples. The most obvious candidate is
the problem

uge = (0(uz) + Uzit)z — 2u, 0<z<l, (3.26)
with boundary conditions
u=0atz=0,1, (3.27)
and initial conditions
u(z,0) = uo(z), uilz,0)=ui(z), 0<z< 1 (3.28)

As before, assume that

o(ug) = Wug), Wiu) = (u2 - 1)% (3.29)
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Then V(u, u;) is a Lyapunov function for (3.26)-(3.28), where

V(u,p) = /o 1[%192 + W(ug) + 2] dz. (3.30)

The minimizing sequences of V subject to (3.27) all oscillate faster and faster,
converging weakly but not strongly to {0,0} in Wy**(0,1) x L?(0,1). (See the
paper in this volume by Miiller [27] for a study of this variational problem with
surface energy added.)

The problem (3.26)-(3.28) has been studied in joint work of P.J.Holmes,
R.D.James, R.L.Pego, P.Swart and the author [9], together with the much more
tractable problem consisting of the equation

1
U = (/ uf. dz — 1) Uz + Uzppt — 2“) 0<z < 1) (331)
0

with boundary and initial conditions (3.27),(3.28). This problem has the Lya-
punov function V(u,u;), where

1 1 2
- 1 1
V(u,p) = / [5(?2 - uz.) + u2] dz + i (/ MZ. dz) . (3.32)
0 0
There are countably many rest points of (3.31),(3.27) given by
up = apsinkmrz, k an integer, (3.33)

for suitable coefficients a;. It can easily be proved that
- 1
i;l(fV = -, (3.34)

where X = H}(0,1) x L%(0,1). Then we have the result

Theorem 2 Let u be any weak solution of (3.31),(3.27). Ast — oo either
(1)  {u,u:} — {ux,0} strongly in X for some k, or
(i) {u,u;} — {0,0} weakly in X, but not strongly, and

.= 1
tl_lglo V(t)= e (3.35)
The alternatives (i),(ii) both occur for dense sets of initial data in X, the set
corresponding to (ii) being of second category.

By contrast, for the problem (3.26)-(3.28) it is shown in [9] that there is no
solution {u,u,} for which

lim V(t) =0, (3.36)

i.e. no solution which realizes an absolute minimizing sequence.
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DISCONTINUOUS SOLUTIONS OF BOUNDED VARIATIONS TO
PROBLEMS OF THE CALCULUS OF VARIATIONS AND OF QUASI
LINEAR HYPERBOLIC DIFFERENTIAL EQUATIONS. INTEGRALS OF
SERRIN AND WEIERSTRASS.

Lamberto Cesari

Department of Mathematics, University of Michigan
Ann Arbor, Michigan 48109

I. BV FUNCTIONS OF v > 1 INDEPENDENT VARIABLES.

In 1936 Cesari [5] introduced a concept of real functions z : G — R, or z(t), or
z(t1,...,t¥), of bounded variation (BV) from a domain G of R”. For the case v =
2, G the rectangle (a,b;c,d), the definition is very simple: we say that z is BV in
G = (a,b;c,d) provided z € L1(G) and there is a set E of measure zero in G such that
the total variation Vi(y) of z(:,y) in (a,b) is of class Li(c,d), and the total variation
Vy(z) of z(z, ) in (c,d) is of class L1(a,b), where these total variations are computed
completely disregarding the values taken by z in E. The number

b d
Vo=Va(a,6) = [ Vate)de+ [ Vala)dy

may well be taken as a definition of total variation of z in G = (a,b;¢c,d), (with respect
to such a set £ C G of measure zero). Analogous definitions hold for BV functions
z(t1,...,t") in an interval G of R”.

We omit here the more involved definition of BV functions in a general bounded
domain G of R”.

If 2 is continuous in G, then no set E need be considered and the concept reduces
to Tonelli’s concept of BV continuous functions. For discontinuous functions, examples
show how essential it is to disregard sets E of measure zero in G. On the other hand,
the concept obviously concerns equivalent classes in L1(G).

We may think of 2(t),t € G C RY, as defining a nonparametric possibly discontin-
uous surface, S : z = 2(t), t € G, in R¥*1 and we may take as generalized Lebesgue
area L(S) of S the lower limit of the elementary areas a(3}) of the polyhedral surfaces
> :z2=12(t), t € G, converging to z pointwise a.e. in G (or in L1(G)). More precisely,
if (3°;) denotes any sequence of polyhedral surfaces Y, : 2 = 2(t), T € G converging
to z pointwise a.e. in G (or in L1(G)),we take for L(S) the number, 0 < L(S) < +oo0,
defined by

L(S)= Inf lm o(g).
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Cesari proved [5] that L(S) is finite if and only if z is BV in G. This shows that the
concept of BV functions is independent of the direction of the axes in RY. More than
that, the concept of BV functions is actually invariant with respect to 1 — 1 continuous
transformations in RY which are Lipschitzian in both directions.

In 1937 Cesari [6a] proved that for » = 2, G = (0, 27,0, 2r) and z BV in G, then the
double Fourier series of z converges to z (by rectangles, by hines and by columns) a.e.
in G. Comparable, though weaker, results hold for BV functions of ¥ > 2 independent
variables and their multiple Fourier series [6b].

In 1950 Cafiero [4] and later in 1957 Fleming [15] proved the relevant compactness
theorem: any sequence (zj) of BV functions with equibounded total variations, say
Vo(2k, G) £ C, and equibounded mean values in G, possesses a subsequence 23, which
is pointwise convergent a.e. in G as well as strongly convergent in L1(G) toward a BV
function z.

In 1967 Conway and Smoller [12] used these BV functions in connection with the
weak solutions (shock waves) of conservation laws, a class of nonlinear hyperbolic partial
differential equations in R™ x R”. Indeed they proved that, if the Cauchy data on
(0) xRY are locally BV, then there is a unique weak solution on R* xR, also locally BV
and satisfying an entropy condition. Without any entropy condition there are in general
infinitely many weak solutions. Analogous results for ¥ = 1 had been obtained before
by Oleinik [18]. Later, Dafermos [13] and Di Perna [14] characterized the properties of
the BV weak solutions of conservation laws.

Meanwhile, in the fifties, distribution theory became known, and in 1957 Krickeberg
[17] proved that the BV functions are exactly those L1(G) functions whose first order
partial derivatives in the sense of distributions are finite measures in G.

Thus a BV function z(t), t € G, G a bounded domain in RY, possesses first order
partial derivatives in the sense of distributions which are finite measures p;,j = 1,...,v.
On the other hand, if we think of the initial definition of z, we see that the set E of
measure zero in G has intersection E N £ of linear measure zero on almost all lines £
parallel to the axes. Hence z is BV on almost all such straight lines when we disregard
the values taken by z on E, and therefore has “usual” partial derivatives D’z a.e. in
G, and these derivatives are functions in G of class L1(G). We call these D7z(t),t € G,
j=1,...,v, computed by usual incremental quotients disregarding the values taken by
z on E, the generalized first order partial derivatives of z in G.

Much work followed on BV functions in terms of the new definition, that is, thought
of as those L1(G) functions whose first order derivatives are finite measures. We mention
here Fleming [15], Volpert [22], Gagliardo [16], Anzellotti and Giaquinta ([1]), and
also De Giorgl, Da Prato, Ferro, Caligaris, Oliva, Fusco, Temam. However, there are
advantages in using both view points.

Great many properties of BV functions have been proved. To begin with, a “total
variation” V(z,G) can be defined globally in terms of functional analysis,

v 6)=Su( [ fin?+ o+ ([ fodm?] "

where the Sup is taken for all fy,..., f, € C(G) with flz 4+ ...+ f2 <1 and compact
support in G.
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If (2) is a sequence of BV functions on G with equibounded total variations, say
V(2,G) £ C, and 2 — z in L1(G), then z is BV and V(2,G) < imy_ o V (2, G).

The question of the existence of traces v : G — R for BV functions z : G — R has
been discussed under both view points. Note that for a BV function 2 in an interval
G = (a,b;c,d) it is trivial that the generalized limits z(a+,y) and z(b—,y), 2(z;c+) and
z(z,d~), exist a.e. and are L functions, i.e., the trace v(z) of z on 8G exists and is
L1(8G). For general domains G in R” possessing the cone property everywhere on 4G,
a theorem of Gagliardo [16] characterizes the properties of G, and one can prove that
any BV function z in a bounded domain G with the cone property and H*~1(8G) < o
possesses a trace ¥(z) on G with v(z) € L1(6G).

We mention here the following theorem by Gagliardo on bounded domains G with
the cone property: If G is a bounded open domain in RY having the cone property, then
there is a finite system (Gy,...,Gm) of open subsets of G with max diam G; as small
as we want, each G has the cone property and has locally Lipschitzian boundary 8G,.

From this result, and trace properties for Lipschitzian domains, it is possible to
define the trace y(z) of a BV function on 8G, for G bounded and with the cone property.
An equivalent definition of traces of BV functions in terms of the distributional definition
is also well known.

We come now to the delicate question of the continuity of the traces of y(z) of BV
functions z in a domain G, in other words whether 2z — 2, say in L1(G), may actually
imply—under assumptions—that y(z;) — v(z) in L1(8G). A number of devices have
been proposed to this effect. For instance, Anzellotti and Giaquinta ([1]) have recently
proved the following statement in terms of the distributional definition of BV functions:
If G has the cone property at every point of 8G, if HY ~1(8G) < oo, if the functions zj,
are BV with V(z) < C, if z; — 2z in L1(G) with V(z) — V(z), then v(z;) — v(2)
in L1(0G). A parallel proof of this statement is available in terms of the original
definition of BV functions. We mention here that it is well known that any BV function
z(t), t € G C R, can be approximated in L1(G) by BV smooth functions z; with
V{zi) — V(2), hence V(z;,) < C.

We shall see now how these ideas have been used in questions of optimization.

II. CALCULUS OF VARIATIONS IN CLASSES OF BV FUNCTIONS.

When the state variable 2, or z(t) = (z1,...,2™),t € G C RY, is only BV, that is, each
component z* is BV in G, the usual Lebesgue integral of the calculus of variations

I(2) = /G folt, 2(t), D=(t)) dt,
t=0,.. . t")eGCRY 2(t)=(z1,...,2™), v >1, m>1,

may not give a true, or stable value for the functional of interest. There are two basic
processes to determine a true, or stable value for the underlying functional, and both
have generated a great deal of recent work.
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One is the limit process already proposed by Weierstrass, leading to a functional,
or Weierstrass integral, W(z). Tonelli made use of it in his early work (1914) on
the direct method in the calculus of variations on parametric continuous curves C,
or z{t) = (21,...,2™), a <t < b, of finite length, hence all z* are BV and continuous.
Recently, Cesari [8ab] presented an abstract formulation of the Weierstrass integral as
a Burkill-type limit on “quasi additive” set functions ¢(I) = (¢1,...,6n), I C G, and
state functions 2(t) = (z},...,2™),t € G C R”. Cesari also proved [8b] that W (2) has a
representation as a Lebesgue-Stieltjes integral in terms of measures and Radon-Nikodym
derivatives derived from the set function ¢. Warner [23] then proved lower semiconti-
nuity theorems for continuous varieties, and very recently Brandi and Salvadori [1defg]
extended further the abstract formulation, proved further representation properties, and
lower semicontinuity theorems, both in the parametric and in the non-parametric case,
and for vector functions z (state variables) only BV, possibly discontinuous, possibly
not Sobolev (see Section VII below).

Another approach was proposed by Serrin [20a] leading to a functional, or Serrin
integral, 7(z), in classes of BV vector functions z(t),t € G C R”. The Serrin functional
T (z) is obtained by taking lower limits on the values of I on AC, or W11(G) functions,
a process which is similar to the one with which Lebesgue area is defined. Recently,
Cesari, Brandi and Salvadori {10ab] proved closure and lower closure theorems, hence
theorems of lower semicontinuity in the Li-topology, and finally theorems of existence of
the absolute minimum of 7(z) in classes of BV vector functions whose total varations
V(z) are equibounded [10ab]. We proved also that I(z) < 7(2), and that 7 is a proper
extension of ] in the sense that T(z) = I(z) for all z which are AC, or Wh1(G) (see
Sections IILIV below). A number of applications of this approach has been announced
[9abe, 11ab).

III. PROBLEMS OF OPTIMIZATION FOR SIMPLE INTEGRALS, v = 1, BY THE
USE OF SERRIN’S FUNCTIONAL.

We may be interested either in problems of the classical calculus of variations involving
a vector valued state variable 2(t) = (z1,...,2™), t; <t <t3, or in problems of optimal
control involving an analogous state variable z(t) = (z1,...,2™) and a control variable
u(t) = (ul,...,u™), t; <t < to, with given control space U(t,z) and constraint
u(t) € U2, 2(t)).

It is more general and more satisfactory (cfr. [7b]), to deparametrize the problems
of optimal control, and concern ourselves exclusively with generalized problems of the
calculus of variations with constraints on the derivatives, say

12
I(2) = /t fot, 2(t),2'(t))dt = minimum,
(t,z(t)) € A C R () € Q(t, 2(2)), (1)

where t € [t1,29] C R (a.e.), where A is a subset of R"*! whose projection on the
t-axis contains [t1,29], and where, for every (t,z) € A, a set Q(t, z) is given constraining
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the direction z'(t) of the tangent to the state variable z a.e. in {t1,t2]. The process of
deparametrization has been discussed in detail in [7b].

For what concerns boundary conditions for problem (1), we restrict ourselves here
to Dirichlet type boundary conditions

z(t1) = 21, 2(l2) = 22 (2)

Above, let M denote the set M = [(t,2,£)]|(t,2) € A€ € Q(t,2)] C R2" and let
fo(t,z,€) be a real valued function on M. Let § be a class of admissible functions,
ie., functions z : [t1,t9] —» R™, or z(t) = (2%,...,2"), such that (i) z is BV in [t1,¢3);
(11) (taz(t)) €A, z’(t) € Q(t>z(t)) a.e. in [t1’t2]; (111) fo(-,z(-),z'(-)) € Ll[tl)t2]'

It is easy to see that the Lebesgue integral definition (1) of the functional (I) does
not yield stable and realistic values for J, and one may use a Serrin type integral. To
this effect, for every z € § we denote by I'(z) the class of all sequences (z;) of elements
zj, € Q with (a) z 1s AC in [t1,t9]; (b) 23 — z pointwise a.e. in [t1,t2).

If I'(z) is empty we take 7(2) = +o00. If I'(2) is not empty, then we take

12
T(2) = inf lim /t folt =4(0) 4O = int lim 1(z¢) (3)

2) k—o0

This is a Serrin type definition of the functional which was inspired to the Lebesgue
area.

If problem (1) has assigned boundary conditions, say of the Dirichlet type 2, then
let T'(z) denote the class of all sequences (z;) of elements zj in § with (a) zj is AC and
satisfies the boundary conditions; (b’) z; — z pointwise a.e. in [t1,3], in particular
2p(t;) — 2(t;), © = 1,2. Then the analogous integral defined by (3) could be denoted
by T* and obviously 7 < 7T*.

We can now state a lower semicontinuity theorem and an existence theorem for the
integrals I and 7 on BV functions. To this purpose we have first to define as usual the
“augmented” sets Q(t, z) as follows:

Qt,2) = [(r, ) > folt,z,€), € € Q(t,2)] c R

A lower semicontinuity theorem. Let us assume that (i) A is closed; (ii) the sets Q(t, z)
are closed, convex, and satisfy property (@) with respect to (t,z) at every (¢,z) € 4;
(iii) fo(t, 2, ) is lower semicontinuous in M, and there exists some function A € L[ty,29]
such that fo(t,2,£) 2 A(t) for all (,2,€) € M. Let z(t), t € [t1,¢2], be BV, and let
zp(t), t € [t1,t2], k = 1,2,..., be a sequence of AC functions z; such that z; — 2
pointwise a.e. in [t1,23], (¢, 2&(t)) € A, 2,(t) € Q(2, 25 (t)) ae. in [t1,27], and V(2;) < C.
Then, (t,2(t)) € 4,2'(t) € Q(t,2(t)) a.e. in [t1,tg), and I(2) < limy_,o0 I(2) [10b].

A fundamental consequence of this lower semicontinuity theorem is that if z is
any of the sequences of AC elements in I'(z), with V(z;) < C, and we take j =
limg_,o0 I(2k), then

1) S T(:) S5 = lm 1)
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Furthermore, the Serrin integral 7T is actually an extension of the integral 7. Indeed,
if z € QN AC, then, by taking zj, = 2 we conclude that I(z) < T(2) < limy_, o0 (2) =
I(2).

Note that for sequences (z;) as above with V'(2;) unbounded, it may well occur that
T{z) < I(z) as it has been proved by examples (cfr. [10b]).

We mention here that Kuratowski’s property (K) at a point (tg,z¢) is expressed by
the relation

O(to,20) = Nes0 el [UQ(E,2), (¢ — to)? + |z — 20/% < &7
The analogous condition (@) at the point (t¢, zg) is expressed by the relation
Qte,z0) = Nsodd co [UQ(t, 2), (¢ —t0)? + |z — 2> < 82,

If problem (1) has assigned boundary conditions of the type (2), then in the theorem
above we assume that z;, — z a.e. in [t1,12], in particular that zi(¢;) = 2(¢;), i = 1,2,
and the same statement holds for 7*.

An ezistence theorem for the integral T. Let us assume that (i) A is compact and M
is closed; (ii) the sets Q(t,z) are closed, convex, and satisfy property (Q) with respect
to (t,2) at every point (t,2) of A4; (i) fo(t,2,€) is lower semicoritinuous in M. Assume
that the class  is nonempty and closed, V(2) < C for all z € {, and I'(z) is nonempty
for at least one z. Then the functional 7 has an absolute minimum z € BV in Q [10b].

In other words, let 7 denote the infimum of I(z) for z € AC N Q, let (2;) denote
a sequence of elements z;, € AC N Q with I(z) — . Then, there is an element
2 € Q, z € BV, such that I(z) < T(z) =1.

Examples have been given in [10a].

IV. PROBLEMS OF OPTIMIZATION FOR MULTIPLE INTEGRALS AND BV DIS-
CONTINUOUS FUNCTIONS, v > 1, BY THE USE OF SERRIN’S
FUNCTIONAL.

Let v > 1, n > 1, and let G C RY be a bounded domain in the t-space R¥, t =
(t,... ,t¥), possessing the cone property at every point of its boundary 0G. Let A C
RY?™ be a compact subset of the tz-space R¥?", whose projection on the t-space
contains G.

We shall deal with vector valued functions z(t) = (zl, ey 2™, z* BV in G, therefore
possessing first order partial derivatives in the sense of distributions which are measures
#ij;d = L,...,v, i = 1,...,n, and in addition also generalized first order derivatives
DIzt ae. in G, as functions of class L1(G), which are obtained as limits of incremental
quotients when we disregard the values taken by the functions in suitable sets E of
measure zero in G. We may need only a subset of such derivatives D7z as follows.
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For every 1 = 1,...,n, let {j}; be a system of indices 1 < j; < ... < js L v, let
Dizt j € {7}, denote the corresponding system of first order partial derivatives of the
function 2!, and let N be their total number. Then by Dz we denote the N-vector
function Dz(t) = (D?z%j € {j},i=1,...,n), t€G (a.ej\).

For every (¢,z) € A let Q(t,z) be a given subset of R". Let M C RY 1tV denote
the set M = [(t,2,€)|(t,z) € A, € € Q(t,z)]; and let fo(t,z,€) be a given real-valued
function in M. We are interested in the multiple integral problem of the calculus of
variations with constraints on the derivatives

(2) = /G folt, 2(t), D2(¢)) dt = minimum,
(t,2(t)) € A, D2(t) € Q(t,2(t)), t € G (a.e.), (1)

and possible Dirichlet type boundary conditions of the form z(t) = ¢(t),t € G (H 1 -
a.e.) on 0G. Again we introduce a Serrin type integral.

Let © be a class of admissible functions z(t) = (z%,...,2"), ¢t € G, such that (i) z is
BVin G; (ii) (¢,2(8)) € A, Dz(t) € Q(t, z{t)), t € G(a.e.); (m) Fols 2(- ),Dz( )) € Li(G).

To s1mp11fy notations, let AC, or AC (G) denote the class of functions z(t) =
(z,...,2™), t € G, whose components z° are of Sobolev class W1(@), or briefly,
Beppo Lev1 functlons

For any element z € Q let I'(2) denote the class of all sequences (z;) of elements zj
in Q with (2) 2 1s AC in G; (b) zp — z strongly in L1(G).

If T'(z) is empty we take T(z) = +o00. If I'(z) is not empty we take

Tle) = inflim | foft,24(0) Deale)dt = nf Jim I(z). )

To state an existence theorem we introduce, as usual, the augmented sets Q(t z)C
RY+1 as follows

Qt,z) = [(7,6)Ir 2 folt,2,€), € € Q¢ 2))-

_ Beside property (Q) we shall require on the sets Q(t, z) another property, or property
F1 [10¢].

We say that the sets Q(t,z), (t,z) € A, have property F; with respect to z at
the point (tg,2¢) € A provided, given any number o > 0, there are constants C > 0,
§ > 0 which depend on tg,z¢,0, such that for any set of measurable vector functions
7(t),z(t),€(t),t € H, on a measurable subset H of points t of G with (¢,z(t)) € 4, |z(t)—
2p] > o, (n(t), f(t)) € Q(t z(t)) for t € H, |t —tg| < 8, there are other measurable vector
functions #(t), 2(t), £(t), t € H, such that’

(t.2(2)) € 4, [2(t) — 20) <o, (7(2),€(t)) € Qt, 2(2)),
€(t) — E(E)] < Clla(@) — 2(¢)] + It —toll,
7(t) Sn(t) + Cllz(t) —2(@)| + |t —to[] fort € H
We denote by }.':2 the same condition with 2(t) = zg. These conditions are inspired to

analogous ones proposed by Rothe, Berkovitz, Browder (cfr. Cesari [7b], Section 13).
These conditions have been replaced by more general ones in [10d].



24

An egistence theorem. Let us assume that (i) A is compact and M is closed; (i) the
sets Q(t,2) are closed, convex and satisfy properties (@) and (1) at every point (¢,2) €
A; (i1) fo(,2,€) is bounded below and lower semicontinuous in (¢,z,€). Also, let us
assume that the class Q is nonempty and closed, and I'(z) is nonempty for at least one
z € . Then the functional T has an absolute minimum 2 in Q, z € BV in G [10c].

In other words, let 7 denote the infimum of I(z) for z € AC NQ, let (z) denote any
sequence of elements z; € AC N with J(z) — ¢. Then there is at least one element

2 €Q, z € BV, such that I(z) < T(z) =1.

V. EXISTENCE OF BV POSSIBLY DISCONTINUOUS ABSOLUTE MINIMA FOR
CERTAIN INTEGRALS WITHOUT GROWTH PROPERTIES.

Recently I considered {9a] multiple integrals of the form

1= [ 315 Wit + Vit )i,

i=1 j=1
Z(t) = (21, ...,zm), t = (tl, ...,t,,) ceGC Ry,
z(t)=w(t), t € B C6G, 1)

and associated Serrin functionals 7(z). I studied these integrals in classes of BV vector
functions z(t) = (z1,...,2m), t € G, with equibounded total variations. Here the U;;
are given functions of class C! and the V; are given locally Lipschitzian functions. The
existence theorems we mentioned in Section IV above, and we had proved in [10c], do
not apply directly to the integrals (1). However, I proved in [9a] that the same integrals
I(z) and 7(z) can be transformed into integrals H(v) and H(v) to which the existence
theorems in [10c] apply. Thus, I could obtain the expected existence theorems for the
absolute minimum of 7(z) for BV possibly discontinuous vector functions 2z, and of
course 0 < I(z) < 7 (z).

In [9b] I also studied a number of variants of the Serrin functional 7(z) associated to
the integral I(z), namely, functionals 7%(z), 7**(z). I proved the needed properties of
lower semicontinuity in the topology of L1, and the basic relation 0 < I(z) < T*(z) £
T*(z) £ T(z). It is clear that whenever we can prove that for the optimal solution
z we have I(z) = 0, then z is a solution of the differential system 3 7_;[Us;(t, )¢, +
Vilt,2)=0,i=1,...,m, t € G (a.e).

By studying the Serrin integrals associated to a particular case of (1) with m >
1, v = 1, we prove in [11b] the existence of BV solutions z(t,z), = (21,...,2m), t 20, 2
scalar, of the Cauchy problem for systems of the form

2y + (Fi(2))z =0, 2;(0,2) =w;(e), i =1,...,m.
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VL. RANKINE-HUGONIOT TYPE PROPERTIES IN TERMS OF THE CALCULUS
OF VARIATIONS AND BV SOLUTIONS.

In [9¢] I investigated in more details integrals I(z) of the form

1(z) = /G (20 + (F(2))y| dady (2)

and corresponding Serrin type functionals, say 0 < I(2) < T™(z) < T*(z) < T(2).

For m = 1, v = 1, we are dealing with the original integral

I(z) = /G l2s + (F(2))y|dody, G C R,

z,y,2, F scalars. (3)
Ifzhasalinel:y =£(z),a <z <b, of class C! and of jump discontinuity, say

29(z) = z(z,£(z)+), z1(z) = z(z,£(z)—), a <z <},

then, under mild assumptions, the contribution of I' on the value of the Serrin type
functional 7 is > 0, and such a contribution is zero if and only if

[z2(z) — 21(2))l'(z) = F(22(z)) = F(21(z)), a Sz <,

along the line I' (Cesari [9¢]). This is the same relation which is well known for weak
solutions of conservation laws (cf. Oleinik [18], Conway and Smoller [12]).
For m = 1,v > 1, we are dealing with the original integral

14
I(z) = /G 22 + > _(Fj(2))y;ldedy, G CR¥H, dy = dy; ... dy,,
e

z,z scalar ,z(z,y) = 2(2,y1,..., %), Fz) = (Fy,...,Fy). 4)

If 2(z,y) has a surface I' : ¢ = L(y) = L(y1,-..,¥v), ¥ € D, of class C! and of jump
discontinuity for 2, say

z3(y) = 2(L(y)+,y), 21(y) = 2(L(¥)—¥), y = (1, .., 9v) € D,
then under mild assumptions the contribution of I on the value of the same Serrin type
functional 7* is > 0, and such a contribution is zero if and only if

v

23(y) — 21(9) = Y _(L())y;[Fi(22(0)) — Fi(z1())], € D,
j=1

on the surface I’ (Cesari [9c]).



26

For m > 1, v = 1 we are dealing with the original integral

m
I(w) = /GE lzi + (Fi(2))y|dedy, G C R?,
=1

z,y, scalars, z(z,y) = (21,...,2m), (F(2) = (Fi, ..., Fm),(5)

and in this situation we must use the Serrin type integral 7**. Let us assume that for
a given ¢ = 1,...,m, the component z;(z,y) of z has aline ' :y = £(z), a <z <b, of
class C! and of Jump discontinuity for z;, say

zio(e) = zi{=, L(2)+), z;1(z) = 25(z,£(z)-), a <z <},

while the remaining components zp(z,y), h = 1,...,m, h # 1, are continuous in a
neighborhood of I'. In this situation, let us take

z’fﬂ(z) = (zi(z, l(z)+); zp(z, £(z)), h #£4, h=1,...,m),
zz,l(.’L‘) = (zi(z,(z)-); zp(z,€(z)), h #4, h=1,...,m), a <z <},

I proved in {9¢], under mild assumptions, that the contribution of I' on the value of the
Serrin type integral 7** is > 0, and such a contribution is zero if and omly if

[zio(z) — zi1(2)}'(2) = Fi(zD(2)) — Fi(z"V(2)), a <= <,
along T' (Cesari [9c]).

VII. THE WEIERSTRASS INTEGRAL W(z).

In [8ab] Cesari established a very general axiomatization concerning extensions of Bur-
kill’s integral on set functions. Namely, Cesari [8a] introduced a concept of quasi-
additivity for set functions, guaranteeing the existence of a limit, now called the Burkill-
Cesari integral. Namely, let A denote any topological space, let {I} be a system of sub-
sets J of A which we shall call intervals, and let ¢(I'), I € {I}, be a given interval function

é(I) = (¢1,...,¢n). For any given net (D, >>) of finite systems D = (Iy,...,Ip) of
nonoverlapping intervals I; € {I}, the limit

- d, S0

is called the Burkill-Cesari integral of the set function ¢. Cesari [8a] proved that if
¢ is quasi additive, then B(¢) exists and is finite. About the non-linear integral I =
Jr F(p,q) over a variety T, Cesari considered the set function &(I) = F(T (w(I)), #(1)),
where w([) is a choice function, i.e. w(I) € I, and ¢ is a set function. Cesari proved [8a]
that if T is any continuous parametric mapping and ¢ is quasi-additive and BV, then
also ® is quasi-additive and BV. In other words, the non-linear transformation F' pre-
serves quasi-additivity and bounded variation. Then the integral W(z) is defined by
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the Burkill-Cesari process on the function ®, and is thus defined as a Weierstrass-type
integral

N
=l (1,
WTe)= lim 3., #)

Cesari further proved, under assumptions, that the Weierstrass integral W (T, ¢) has
a Lebesgue-Stieltjes integral representation

W(T,¢) = /G F(T(s), (dp/dlrll)(s))dn

in terms of a vector measure g related to ¢, its total variation ||u||, and the Radon-
Nikodym derivative dp/d||p|| instead of Jacobians.

Later, many authors studied this integral, both in the parametric and in the non-
parametric case, for curves and for varieties, and framed in this theory many of their
properties (see [21] for a survey). Note that if F' does not depend on the variety, i.e.,
it is of the type F(g), then the sole concept of quasi-additivity permits the extension of
W (z) over BV curves and surfaces, not necessarily continuous nor Sobolev’s.

In the last years Brandi and Salvadori [2defg] have extended the definition of W (z)
over BV curves or varieties, not necessarily continuous nor Sobolev’s, for complete
integrands F'(p,q).

First the term T'(w(J)), in the definition of ®(I) was replaced [2d] by a set function
P(I) whose values are in a metric space K, while ¢(J) is a set function whose values
are in a uniformly convex Banach space X and F : K x X — E, with E a real Banach
space. In order to guarantee the existence of the integral W (z) for BV transformations
T, a condition on the pair of set functions (P,¢) was proposed in [2d], which is of the
quasi-additivity-type, and was called I'-quasi-additivity. This condition reduces to the
quasi-additivity on ¢ when P is the usual set function T(w(J)) and T is continuous. In
this new situation, Brandi and Salvadori proved that, if (P,¢) is I'-quasi-additive and
¢ is BV, then still ®(I) = F(P(I),¢(])) is quasi-additive and BV. Thus the integral
W is still defined by the Burkill-Cesari process on the set function ®, and W is still a
Weierstrass-type integral even for T’ only BV, possibly discontinuous.

Note that the new condition on (P,¢) is weaker than the couple of assumptions:
continuity on T and quasi-additivity on ¢. Moreover, it takes advantage of the power
of the quasi-additivity-type properties to extend W over BV curves and varieties, for
integrands of the type F(p,q), both in the parametric and in the non-parametric case
(see many applications in [2def]).

Even in this more general setting, the integral W admits of a Lebesgue-Stieltjes
integral representation ([2d])

WT,4) = /G F(T(s), (dp/dlel)6))dlel,

in terms of a vectorial measure p related to ¢, its total variation |||, and Radon-
Nikodym derivative du/d||s]|, as in the previous work of Cesari [8b] in Euclidean spaces
and in the successive extensions to abstract spaces, always for continuous varieties T
(see [21] for a survey).
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In the non-parametric case (see [2¢]) Brandi and Salvadori transform the integral
I = [f(t,p,q) into a suitable parametric integral in the manner of McShane, with
integrand F(t,p;£,q) defined by F(t,p;€,q) = £f((t,p,q/¢) for £ > 0 and F(t,p;0,9) =
limy_g. F(t,p;€,q). Then the set function ® becomes &(I) = A(I)f(p(I),d(I)/A(I)) =
F(p(I); M(I),¢(I)), and the existence result is still given in terms of I'-quasi-additivity.
Now the representation of W in terms of Lebesgue-Stieltjes integral becomes

W(T:¢)=/G}t(ﬂ(s)a(d(V:#)/d||(V>#)||)(5))d”('/,ﬂ)“,

where p is the vectorial measure related to ¢, v is the real measure related to A and
l(», 1)]| 1s the total variation of the measure (v, u). Furthermore, in this non-parametric
situation, Brandi and Salvadori proved a Tonelli-type inequality in [2e¢] relating W (z)
to a corresponding Lebesgue-Stieltjes integral, namely,

W(T,¢) > /G F(T(s), (6/80)(6)) dv,

where §u/bv is a derivative of the Radon-Nikodym type, and the equality sign holds if
and only if the set function ¢ is absolutely continuous with respect to the set function
A. If ¢ is absolutely continuous with respect to A, then éu/év reduces to the usual
Radon-Nikodym derivative Ou/0v. In proving this last result, as in the proof of the
representation theorem, Brandi and Salvador used a connection between the Burkill-
Cesari process and the convergence of martingales, a connection which was already
made in previous papers (see [21] and also the quoted papers [2def]).

Finally, in [2f] Brandi and Salvadori dealt with the problem of the lower semicon-
tinuity for the integral W, both in the parametric and in the non-parametric case. A
first abstract lower semicontinuity theorem was proved in terms of a suitable global con-
vergence on the sequence (Py,¢r), defined in the same spirit of the I'-quasi-additivity
and therefore again inspired to Cesari’s concept of quasi-additivity. In a number of
applications this convergence is implied by the Lj-convergence of equiBV varieties.
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Abstract

We study minimizers of the singulerly perturbed functional I(u) = fol {ul, +
(v —1)? +u*} dz, subject to u(0) = u(1) = 0. For € = 0 no minimizers exist and we
show that for ¢ > 0, small, the minimizer is nearly periodic with period proportional
to €. Connections with solid-solid phase transitions in crystals are indicated.

1 Introduction

Continuum models based on the minimization of nonconvex functionals have been used to
model a variety of phase transitions. A problem often encountered is that the functional
has many minimizers. A selection principle is needed to choose the physically relevant
ones. The present work, motivated by a model for solid-solid phase transitions in crystals,
addresses the situation where the underlying functional has no minimizers and analyses
a selection criterion for minimizing sequences.

For illustration consider first an example leading to many minimizers. The free energy
of a van der Waals gas (at constant temperature) confined to a container §2 C R" is given
by

F(v) = /n £(0(2))dz, (1)

where v is the density of the gas. We seek to minimize F subject to the constraint that
the total mass is given, i.e.

/vdz:m:/\measﬂ. (2)
o

Coexistence of different phases can occur if f is a nonconvex function. Replacing f by

f(v) — pav — pz (which in view of (2) does not change the minimizers of F) we may

assume that f has exactly two minima, at @ and b, with minimum value 0. For A € (a, b),
b2

v is a minimizer of F if and only if, for some A C  with measA = i,meas (2,

_J a forzc A
1"(a")_{b fore c @\ A ®)
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If we regard v = a and v = b as two phases then only the proportion of each phase is
determined by minimizing F. No information is obtained about the geometrical arrange-
ment of the phases. This leads to the question whether some of the minimizers are — in
some physical sense — preferred.

The approach taken by van der Waals [vdW 93] and rediscovered by Cahn and Hilliard
[CH 58] is to consider a modified energy functional which also depends on the density
gradient and thus penalizes sharp transitions in density. The problem becomes then to
minimize

F&(v) = /n (€| Vv P +f(v)}de,

subject to (2).

If Q is an interval, Carr, Gurtin and Slemrod [CGS 84] showed that for sufficiently
small ¢ the minimizer v¢ has to be a monotone function. Letting ¢ — 0 one obtains
& minimizer 7 of F such that the sets A and 2\ A in (3) are intervals which meet in
exactly one point. This result was generalized by Modica [Mo 87] (see also his article
in the present volume) and Kohn and Sternberg [KS 88] to @ C R™ . These authors
show that for the limiting minimizer 7 the interface between A and 0\ A is a minimal
surface (subject to the volume constraint). Thus the study of the singularly perturbed
functional F€ leads, in this case, to a sensible selection of ‘preferred’ minimizers of F.

The present work was motivated by an attempt to use the singular perturbation
approach in the context of solid-solid phase transitions in crystals. Ball and James
[BJ 87], [BJ 89] used a continuum model to study these phase transitions which is based
on the minimization of the elastic free energy

E(u):/(;W(Vu)dz,

where © C R? denotes the reference configuration of the crystal, u : @ — R3 its defor-
mation and W the stored-energy density. It turns out that in general the infimum of E
is not attained. In a particular example one obtains minimizing sequences u(*) such that
Vul™) essentially only takes two values Fy, F; on sets A;, A;. As E(u(™)) approaches
the infimum, the layering of 4; and A; becomes increasingly finer while the relative
proportion of the two ‘phases’, i.e. the ratio measA; /measA, approaches a limit. This,
however, still leaves a great degree of freedom as regards the detailed arrangement of A;
and A;. There exist, e.g. both periodic and nonperiodic minimizing sequences. In order
to select ‘preferred’ minimizing sequences one would like to study the minimizers of

ES(u) = / [ | V?u |2 +W(Va)} da,
a
and pass to the limit ¢ — 0 . This, however, appears to be a rather difficult problem and

in the present work we confine ourselves to a one-dimensional problem instead.
For u : [0,1] — R consider

I(u) = /0 {2 ~1)? + v’} de .

Under the boundary conditions (0) = u(1) = 0 the infimum of I is not attained. If
4(™) is a minimizing sequence then ug,") has to oscillate increasingly faster between —1
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and 1. As in the previous example there is a variety of such sequences. It turns out,
however, that the minimizing sequences obtained via singular perturbations exhibit an
(approximately) periodic pattern. More precisely we have

Theorem 1.1 Let )
If(u) = / {42, + (ul — 1) + u?}dz, (4)
o
let € be sufficiently small and let u be a minimizer of I€, subject to
u(0) = u(1) = 0. (5)

Then u, has a finite number of zeros 0 < #; < ... < zye < 1, N¢ = "1 Lg' + O(1) ,
and
®ip1 — @ = €Llg + 0(62). (6)

Moreover
up = 1 + O(e?), (7)

provided thet |z — z; |> Ce®lnet, for alli=1,...,N¢. Finally

minI¢ = e2Eg + O(e*). (8)

Thus for the minimizers u€ of I¢, u$ approaches a step function with approximately
equal steps as € — 0. We have used the notation

! 8
4o 2f (1-)dz =, )
-1
Lo (640)'/2 = 2v/2, (10)
, 41
By = m;n(Aod 1+Ed2)

1
ALyt + ﬁLf, = Va. (11)

Remarks. 1. Note the unusual scaling €® of the singular perturbation. This was
merely incorporated to avoid writing fractional powers in the sequel.

2. The scaling law for N¢ and I€ have been predicted by Tartar [Ta 87] on the base
of formal asymptotic expansions.

3. Similar results can be proved if (u2 —1)? is replaced by a more general double well
potential.

The proof of the theorem comprises two steps. First we derive very precise upper and
lower bounds for min I€. These imply pointwise bounds on u€, uniformly in e. Equipped
with this additional information we employ in a second step the Euler-Lagrange equations
to estimate the location of the zeros of uS. The first step is carried out in section 2, the
second in section 3.
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2 Variational estimates

In view of (6) it seems reasonable to rescale # and we define

v(z) = e lu(ez). (12)
This gives
Ve(2) = ug(€2), Vae(2) = euga(ex),
and
1
If(u) = f {42, + (v —1)? + u?}de
0
1/€
= {e*v2, + (v2 — 1) + v }ede
° 1/€
= 63/ {02, + e 2(v2 — 1)? + v?}d=. (13)
0
Let ,
J€(v;a,b) = / (@92, + e (s} - 1) + v} (14)
Then
J€(v) = T€(v;0,€7t) = 3 I¢(u). (15)

The main result of this section is

Theorem 2.1 Assume that € is sufficiently small and that b—a < €~1. Then there exists
a constant C such that

min{J¢(v; a,b) | v € H%(a,b), v(a) = v(b) = 0}
min{J¢(v;a,b) | v € H*(a,b)}

Eo(b —-a)+C, (16)

<
Z Eo(b - a) hd C, (17)
where Eq is given by (11).

Remark. The proof that the minimum of J€ is attained is standard since the inte-
grand is convex and coercive in the highest derivatives.

Theorem 2.1 immediately leads to pointwise estimates for v.

Corollary 2.2 Let v be a minimizer of J¢ subject to v(0) = v(e) = 0. Then we have,
Jor every interval (a,b) C (0,1/¢),

J€(v;a,b) < Eo(b—a)+C. (18)
Moreover

sup |v |+ | |[<C. (19)
(0.1/€)
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Remark. Note that (12), (19) imply that | u |< Ce, if u is a minimizer of the original
functional I€.

Proof of Corollary 2.2 . The first assertion is immediate. Observe that J¢(v;a,b) =
J€(v;0,1/¢) — J€(v;0,a) — J(v;b,1/¢) and apply Theorem 2.1. As for the second
assertion we first show sup | v, |< C. Let M = sup|v,| — 1, assume without loss of
generality M > 4 and choose zg such that v,(2o) = M > 4. Let (a,b) C (0,1/¢) be the
maximal interval containing zo on which v, > 2 (note that v, is continuous since v € H?
). Clearly (a,b) # (0,1/¢) since v is minimizing. Therefore v, =2atz =aorz=%.
Assume the former, then, by Lemma 2.3 below,

2M3—C’.

Y|

To M
/ {202, + e (v —1)*}dz > 2/ (22 ~1)dz >
a 2

Moreover, by splitting v in its positive and its negative part, we see that v, > 2 implies

b (b—-a)/2 1
/ vidz > / (22)%dz = E(b ~a)?,
a ]

and hence 9 1
Eo(b—a)+C > J¢(v;a,b) > §M3 + g(b— a)® - C,

so that M < C, uniformly.in ¢. Finally, for a € (0,1/¢) , observe that

a+1
o) = [ vdal<supu <,
a

and
1/2

a+1 a1
|/ vdwls{f vzdz} < (Bo+ O3,

which imply that sup | v |[< C.

The proof of Theorem 2.1 is based on the following observations. The minimizer of
J€(.; a,b) will satisfy v, ~ +1 except on small transition layers where v, changes sign.
The term e2v2, +¢~2(vZ —1)? will only be large in these transition layers and the integral
from a to b of this term will increase with the number of transition layers but will be more
or less independent of their mutual distance. On the other hand, v? will become large
if v, is constant over a long interval, i.e. if the distance between two transition layers
becomes large. The combination of these two effects will force the transition layers to be
more or less equidistant, and there is some optimal value Ly for their mutual distance.
We begin with a lemma due to Modica [Mo 87] which gives a lower bound for the energy
associated with one transition layer.

Lemma 2.3 Letf .
H(z)=/o |1-p?| dp (20)

and let v € H*(a,b). Then

/b{ezviw +e (vl ~ 1)*}de > 2| H(ve)(b) — H(v:)(a) | (21)



36

Proof. We have

b
/ vl +e (vl - 1)%de
a

v

b
/2|vi-1”vu|dz
a

v

b
2 (1B | d2 2 2] B)0) - Ho)@) |

Proof of Theorem 2.1 (i) (upper bound). We chose a testfunction v with N
equidistant transition layers. Specifically let z; = a + Zifvl(b —a)i=1,...,N,let

W(z) _ - tanhe"z(z - z,‘), l T —2; |S 2—1-—’ F Odd,
- tanhe~%(z — 2;), |2 —=; |< 53, i even,

and let

ve)= [ wle)ae,

a
(cf [Ta87)). We clearly have v(a) = v(b) = 0. Moreover on (z; — 55&;2: + 538) =
(z7; =) we have
R

so that the estimate in Lemma 2.3 becomes sharp (this was in fact the rationale for the
choice of w) and hence

/:_ {02, + € 2(1 - v2)?}de
=2 H(ve)(z") - H(ve)(=7) |
< 2(H(1) — H(-1)) = A,. (22)

(cf (9) ). Moreover v(w; + 55&) = 0, and hence

¢+ ﬂ+ O+
j vide = 2/ vzszZ/ (1 - 2;)%de
z= ®; i
1 (b—a)®
T 12 ( N ) (23)
It follows that
€., 1 (X a)a
J (”1avb) < N(A0+ 12 N°® )
1
= (b a)(4od™" + ;5d%), (24)

where d = (b — a)/N. If we could chose d arbitrarily, the left hand side of (24) would be
minimized by d = Lo, with minimum value Ey (see (11)). Choosing N as the smallest
integer larger than (b — a)/d, we find that

J€(v;a,b) < Eo(b— a) + A,
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which proves (16). Expanding the function d Agd~1 4+ 11—2d2 around Lo, we see that in
fact
J¢(v;a,b) < (b—a)(Eo +C(b—a)72). (25)

Proof of Theorem 2.1 (ii) (lower bound). For the function v used to establish the
upper bound we found that every transition layer (i.c. every interval where v, changes
from ~ +1 to ~ —1 or vice versa) contributes an amount Ao to the energy, while an
interval of length d between two consecutive transition layers contributes ﬁda. Now we
want to show that (up to order ¢) we cannot do better. The following definition will be
useful.

Definition 2.4 Let v € H%(a,b),6 € (0,1). An interval (2~,2%) is called a §-transition
layer for v if

va(2”) = —-1+46 (1 -8, resp.)

ve(2t) = 1-§6 (—1+ 6, resp.)
vo(2) € (=1+61-68) forz€(2,2%)

Lemma 2.5 Let € be sufficiently small, let § = €'/ and let v € H*(a,b). If (z—,2%),
(y~,y*) are two consecutive §-transition layers for v then, for ally € (2*,y7),

[ A0 4202 17 + w7 s 2 (1- OBy - 27), (26)

where Eq is given by (11). If (2,y) is an interval which does not intersect qny §-transition
layer, then

/y{ezvze + e (v — 1)’ + v’} de > (1 — Ce)Eo(y — =) — Ao, (27)

where Ag is given by (9).

Proof. We only show the first assertion as the proof of the second is similar. Fix
y € (zt,y") and let d = y — #~. By Lemma 2.3 and Definition 2.4 we immediately
obtain

> / {02, + e (v — 1)’} de
> 2(H(1-6)- H(-1+6))
> Ag—c6®> (1-Ce)d, (28)

[t 40t - 171 ae

Moreover we may assuine
Yy
/ (v — 1)’ de < Eodé?, (29)
-

as otherwise there is nothing to show. Letting v(z) = v(2~)+2—2~ +w(z) = v, (2)+w(2)
we have

Y ds
/ v} dz > I (30)

Now wy = vy — 1. Since (z~,y) contains only one transition layer, either v, < 1 —§
or v; > —1+ & on the whole interval. Assume that the later holds. We find | w, |<
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v2—1ifv, >0, | wy [< 622 —1)?if —1+6 < v, < 0. Therefore, using (29), it
follows that

lw(z) |

IN

Y y

/ 1w, | d < / {(2 = 1) + 6-2(s2 — 1)’} de
- a™

d"/*(Eode®)*? + 672 Eode?

(EL'? + Eo)de,

IA

]

and

¥
/ |w]? de < Ce?d?,
o

which, together with (30), implies

¥ 2 3 Eij.
j [v]*de>(1 Ce)lz. (31)

Now (26) follows from (28) and (31) since Ag +d®/12 > Eqd by definition of E,.
Proof of Theorem 2.1 (ii) (continued). We only need to show that J¢(v;a,b) >
Eo(b—a)—C, whenever v satisfies J¢(v; a,b) < Eo(b—a). Fix one such v. By Lemma 2.3,

v can only contain a finite number of §- transition layers (we chose § = €'/2) (27, z}),i =

1,...,N. Applying (26) to (z;,z;,;) (where 2y, = b) and (27) to (a,2]) it follows
that

J€(v;a,b) (1 — Ce)Eo(b—a) — Ao

2
Z Eo(b—a)—— C,

since by assumption b — a < e, This finishes the proof of Theorem 2.1.

3 Analysis of the Euler-Lagrange equation

Let v € H%(0,e~') be a minimizer of
1/€
Jé¢(v) = {Ev2, + € 2(v2 — 1)? + v?} de, (32)
0

subject to
v(0) = v(e™1) = 0. (33)
Then v is in fact smooth and satisfies the Euler-Lagrange equation
Vpp0n — 2(113 —V)e + e*v =0, (34)
together with the boundary conditions

V=vg =0atz=0,¢". (35)

The proof of Theorem 1.1 will be based on a careful analysis of (34), using in particular
the a priori estimates of Corollary 2.2. The main idea is to consider the term v as a
slowly varying perturbation. We will show that transitions layers, i.¢. intervals where v,
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changes sign, can only occur near a point @¢ if (o) is close to a certain constant (see
Lemma 3.5). This in turn will imply that the transition layers have to be (approximately)
equidistant. Two important steps towards these results are contained in Lemmas 3.3
and 3.4, respectively. The former states that if v,(2¢) is not close to &1 a transition
layer must occur near 2, while the latter, based on linearization, ensures that if v, is
close to +1 on a sufficiently long interval one can obtain very sharp estimates for v, on
a slightly smaller interval. In the following v will always denote a (global) minimizer of
J€ (subject to (33)), unless otherwise stated.

We begin with a very modest result ensuring that every sufficiently long interval
contains a subinterval of fixed length on which v, is close to 1.

Lemma 3.1 There exist constants L and B such that for every § € (0,1/2), every
€ < BS, every A < B8? and every interval (a,a + L) C (0,€™1) there ezxits a subinterval
(a'a’ + A) C (a,a+ L) on which 1 — 8§ < v, < 1+ 6. The same result holds with v,
replaced by —vy.

Proof. We give a sketch of the argument which is based on (18). Let M = {z ¢
(a,a+ L) | v, € (1 -61+86)}. M is a union of open intervals which we divide into
two groups. The first group contains those intervals for which | v, — 1 |> 6/2 on the
whole interval; denote their union by M;. The second group contains the remaining
intervals, their union is denoted by M,. If J is an interval from the second group, v,
must take the values 1+ & and 1+ 6/2 on J. Thus, by Lemma 2.3 and (18) there
can be at most C6~%(L + 1) such intervals. If the lemma was false we therefore had
measM; < C67%(L + 1)A. On M; we have W(x) > c62, and hence, again by (18),
measM; < C672¢*(L + 1). Similarly measMs < C§~2¢%(L + 1), where M3 = {z €
(@,a+ L) | vo € (-1 —6,~-14+6)U(1-61+6)} Nowwv, € (-1 —6,—1+6) on
(a,a+ L)\ (M U M, U M), and hence, by the bound on v, in (19), f:”’ v de < —~L/4
for a suitable choice of the constant B. For large enough L this contradicts the uniform
bound (19) on v and thus the lemma is proved.

It will be useful to consider the integrated form of (34). Letting

V(e) = /: v(r)dr, (36)

we obtain
€ Vpre — 267 2(v2 —v,) + V = CE. (37)

Multiplying by v, and integrating we deduce after various integrations by parts
v, — e }(v2 — 1) = ~2(V — Cf)v, + v? + CS (38)
Lemma 3.2 There exists a constant C (independent of €) such that for all 2 € (0,e71)
ICTI+1C1+]V(=)|<C. (39)
Proof. We first show | Cf |< C. By Lemma 3.1 there exists a constant C and

intervals I = (a',a'+C~1€?), I = (¥',b'+C~'¢?) such that I; C (0,L) and | v,—1 |< Ce
on I, | v, + 1 |< Ce on I;. By the Mean Value Theorem there exist a € I, b € I, with
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| vee |< C~ 11 at a, b. Applying (38) at a, b, taking the difference and using (19) we see
that | C§ |< C, since | V(b) — V(a) |< Lsup | v |< C. Taking sums leads to | C§ |[< C.

To show that | V(z) |< C we choose b € (=,2 + L) such that | v.4(b) |< Ce™1,|
v2(b) — 1 |< Ce, use (38) for a,b and take the difference.

Next we show that the transition regions where v, changes sign have to be rather
thin.

Lemma 3.3 Let § > Ce, where C is a sufficiently large constant.
1. If g is a zero of vy, then there exist ®1, 22 such that
~vg(21) = va(22) =1 -4,
iezln 2671 <|2; — 2o |< €?In2671.
2. Conversely, if Lv,(®1) = 1— 6, there exils a zero ®g of v, such that | &, — 2 [<
eIn26-1.

3. Ifve(®o) > 148 (resp. ve(mo) < —1~8), then vy, > 1+ 6 (resp. v, < —-1-16),
either on (0,20) or on (zg,€7 ).

Proof. We only show 1., the other proofs being similar. Let w = v,. From (38), (19)
and Lemma 3.2 we obtain
efw? > (w? - 1) - Cet.
In particular w, cannot change sign unless w is close to +1. By choosing C large enough

we may achieve that (w? —1)2 — Ce® > Y(w? -1)? > Cé* forw € [-1+6,1-6]. In
particular we can invert @ — w(e) until £w reaches 1 — § and, assuming for convenience

we > 0, we find
1-§ 1-6
d
2y — 2o = / w Szez/ _dw
o wa(w) o 1-w?

= 2¢%arctanh(l — §) < e?In 267, (40)

The lower bound for 2 — 29 and the bounds for #; — ¢ are obtained similarly.

As a consequence of Lemma 3.3 we establish that
| Ve ‘S 14 Ce,

for a suitable constant C. From (38), (35), (39) and (19) we obtain that, for z = 0 and
z =€}, (v2 —1)? < Ce?, and hence | v, |[< 1+ Ce. By Lemma 3.3 3. the same holds
for all z € (0,¢71).

The interval (0, ¢~ ') may thus be divided into regions where v, € (1 —6,1+6),6 =
Ce, and transition layers where v, € (—1+ 68,1 — §). The latter are very thin by Lemma
3.3. If the former are sufficiently long sharper estimates on v, can be obtained. We have
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Lemma 3.4 If | ve ~— 1|< Ce on (a,b) then
| v — 1| +€ | vga |< Ce? (41)

on (a+7,b—7), where T = 2¢In2¢™1.
If vy > 0 on (a,b) then

| e — 1| 4€® | oo |< Ce? (42)
on (a + 21,b - 27). The same estimates hold if v is replaced by —v,.

Proof. Note that the second assertion is an immediate consequence of the first and
Lemma 3.3. As for the first assertion we show first | v; — 1 |[< Ce? on (a + 7,0 — 7).
Expanding 2(z® — z) around z = 1 we obtain 2(2® — z) = 4(z — 1) + O(| z — 1 |?) so that
(37) becomes :

s — 4(w —1) = (C] = V) + O(| w— 1 *) = O(¢), (43)

where we wrote w = v,. Let w® be the solution of e*wd, — 4(w® — 1) = 0, subject to
w®(a) = w(a), w°(b) = w(b). Then w—w® has zero boundary values on (a, b) and satisfies

e*(w — w0)ee — 4w — w?) = O(e?).
By the maximum priciple, | w — w°® |< Ce® on (a,b). It is easily checked that

A(a) + A(b) cosh{(z — 7)/2¢*}

w(z) = 1+ 2 cosh(d/2e2)
+A(a) — A(b) sinh{(z — F)/2¢?}
2 sinh(d/2¢2) '

where A = v, —1,%Z = (a+b)/2,d = (b—a)/2. The desired estimate for | v, —1 | follows.
Moreover (43) implies that | vp02 |=| Wss |< Ce™% on (¢ + 7,b — 7). Using the Mean
Value Theorem on an interval of length €? together with the estimate for v, we obtain
the estimate for vg,.

The next lemma provides the key estimate for the proof of Theorem 1.1.

Lemma 3.5 Assume that any two zeros of v, are at least a distance 41 = 8€*In2¢?
apart. Then at every zero z of v, we have

| v¥(=) + C5 | + | V(=) — Cf |< C€. (44)
Moreover C§ > ¢ > 0 (uniformly in €), and any two consecutive zeros z,y of v, satisfy
|y—=z—2(-C§)? < c&, (45)
while the first and the last zero of v, satisfy
|21 - (=C5)Y? < C€

and
|t —ay — (—C§)? < €&,

respectively.
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Proof. We first show that for any two consecutive zeros @, y of v,,

¥
/ v | =1 de < Ce. (46)

E

Assume for convenience that v, > 0 on (2,%y). By Lemma 3.4 it suffices to show that
Y .
j vz —1 | de < Cé,
y-2r

as the estimate over (z,z + 27) is similar (recall that 7 = 2¢?In2¢™!). Let z be the
first point in (y — 27, y) such that v, = 1 — Ce, where C is the constant appearing in
Lemma 3.3. The integral over (y — 27, z) is readily estimated. Finally we define points
Yo =2 <y <...<ypin the interval (z,y) by v, (ys) = 1—2*Ce, where 1/2 < 2°Ce < 1.
The points y, are well defined by Lemma 3.3, and a ‘time-map’ estimate like (40) gives
| yk+1 — & |< Cé€?, from which the assertion follows after a short calculation.

To show (44) we will apply (38) at # + 27. Assuming for convenience v,(x — 27) > 0,
we have, by the second part of Lemma 3.4,

va(z£27) = F1+0(),
a2 £27) = O(1),

and by (46)
v(e£27r) = v(z)- 27+ O(e?)
et2T
V(et2r) = V() +/ vda
= V(z)x 21v(z) + O(e?).

Substituting this into (38), (44) follows.

Note that at v, = 0, v has a (local) extremum. Therefore (44) in particular implies
that max | v |< (—=C§ + Ce?)*/2. Combining this with (46), it follows that the maximal
distance of two consecutive zeros of v, is bounded from above by (—Cf + Ce?)!/2 4 Cé?.
By Lemma 3.3 and Lemma 2.3 the energy estimate (18) can thus only hold if —Cf is
bounded from below by a positive constant, uniformly in e. Using this fact in combination
with (44) we see that v(z) = £(~C§)*/? + O(e?) whenever v, = 0. Now (45) follows
from (46). The result concerning the first and the last zero of v, follows from (46) as
well, since »(0) = v(e~!) = 0.

We are now ready to prove the main result.

Proof of Theorem 1.1. In view of the previous lemma and the scaling (12) only two
things remain to be checked. First we have to ensure that the zeros of v, are well sepa-
rated, secondly we have to verify that 2(—C§)'/2 = Lo + O(e). Intuitively it is obvious
that for a minimizing v two zeros of v, cannot be very close since such a pair of zeros would
contribute an energy of ~ 24, (see Lemmas 2.3 and 3.3). Removing the pair only effects a
tiny change in v and should therefore lower the energy. Rather than giving all the techni-
cal details of the exact argument we illustrate it at a typical example. Let zg, 21, 23, 23 be
consecutive zeros of v, such that 2, —z¢ > ¢, z3—23 > ¢, while 2;—2; < 47 = 8¢%In2¢~ 1.
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Let ¢ be a smooth function with support in (2o + 27,21 — 27) such that 0 < ¢ < 1,
| ¢ |< C, [ddz > c/2. let y1 = @1 — 27, y2 = %3 + 27 and let

Ve (¥2) — vs(31) i
w:{ va (1) + 2 y;2 _;f Moz —3) ifz e (m,v)

Vs + 8¢ else,

where

] Ya
’= (/ ¢d:u)"1/ (vs — w)dz = O(r).
- Y1
We have w = v, outside (z9+27, ¥2), and inside that interval | w21 |[< C7and | w, |< C,
since v(%) = £1 + O(e?), by Lemma 3.4. Moreover f::(v, — w)dz = 0, so that the
function 7 defined by .
#(2) = v(20) +/ wde,

®o
coincides with v outside (2o, y2). A straightforward calculation shows that ¥ has lower
energy than v.

We finally show 2(—C$)}/2 = Ly + O(€). Let N be the number of zeros of v, and let
dy = e !N~ By Lemma 3.5, d; = 2(—C%)}/2 + O(€?). Let 2;, 2,41 be two consecutive
geros of v,. Repeating the argument in the proof of Lemma 2.5 with the improved
estimates (42) and (46) we obtain

d3
TE(v; 2i, @ig1) > Ao + i% - Cé.

A similar calculation (using »(0) = v(e™!) = 0) shows that

da
T (v;0,21) + J€(v;2n, € 1) > Ao + 1—; - Cé.

Therefore

3
J€(v;0,67Y) > N(Ao+;l—;-Cez)

-1 o1, 4 2
= € *(Aod; +1—2-—Ce )-
Now d — Agd~! + d?/12 has a (quadratic) minimum at d = Lo with minimum value
Eo and hence (25) implies that | dy — Lo |< Ce as claimed. This completes the proof of
Theorem 1.1.
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DYNAMICS OF CLUSTER GROWTH
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§€1. INTRODUCTION

The formation of a distribution of cluster sizes is a common feature in a
wide variety of systems. Examples include astrophysics, atmospheric physics,
colloidal chemistry, polymer science and the kinetics of phase transitions in
binary alloys. In this paper we discuss the mathematical theory of a model
for the dynamics of cluster growth. The processes described by this model
involve coagulation of clusters via binary interactions and fragmentation, a
unimolecular process. The distribution of cluster sizes is determined by the

competition between these processes.

If cj(t) =z 0, j=1,2,..., denotes the expected number of j-particles per

unit volume, then the discrete coagulation-fragmentation equations are

. IJ‘1 ©
¢, = 3 Z [aLj_k’k xS T bj_k,k cj] - z [a\J,k € C - by cj+k] (1.1)
k=1 k=1
for j=1,2,... The coagulation rates aj x and fragmentation rates bJ , are
nonnegative constants with a T, and bj,k = ka . In equation (1.1)

the first two terms represent the rate of change of the j-cluster due to the
coalescence of smaller clusters and the breakup of the j-cluster into smaller
clusters. The final two terms represent the change due to coalescence of the
J-cluster with other clusters and the breakup of larger clusters into
J-clusters. For a derivation of this equation and its analogue in which the
cluster size is a continuous variable see [6]. The model neglects the
geometrical location of clusters and spatial fluctuations in cluster density.

For further information on these effects see [4, 5].



§2. SOME SPECIAL CASES

Since matter is neither destroyed nor created in the interactions
described by (1.1) we expect that the density p = ¥ j cj(t) is a conserved
quantity. In certain circumstances however, the density is not conserved. To

illustrate this and other phenomena we consider some special cases.

(a) Let bjk = 0 for all j and k so that we only consider coagulation. We
further specialise to two forms of coagulation kernel:
_ 13
a,  =J + k (2.1)
®
aj'k = (jk) (2.2)

The additive form of aLk in (2.1) would arise in applications if we assumed
that binary interactions occur randomly with a rate depending on the effective
surface area. The multiplicative form of (2.2) would apply to situations in
which bond linking was the dominant mechanism. Note that for the kernel
(2.1), large-large and large-small interactions have the same order of

magnitude (i.e. a for large J and small k), whereas for (2.2)

% a
Ik 3,3
large-large interactions dominate.

If o« > 1/2, then for the kernel (2.2), density conservation can break down
in finite ¢ime [7]. This is interpreted as the appearance of an infinite
cluster or gel. For the kernel (2.1), if a solution exists then density is

conserved [3].

To gain some insight into the dependence of the rate of growth of clusters
we use a technique due to Leyvraz and Tschudi [9] to relate solutions of (1.1)
with different initial data. We first consider the kernel (2.1) so that (1.1)
takes the form

j=1

¢ = L 0% + K% -
cy= ) lGRT e re e

k=1 k

ur~18

Lo o
. (" + k) €, S (2.3)

1

Let c, be a solution of (2.3) with initial data c;(O) =3 For positive

5,1
integers n define c"(t) = (cj(t)), J=1,2,... by
(1) = ntt(n®tt)
nj
(2.4)
c:(t) = (0, r not a multiple of n.

It is then easy to check that c"(t) is a solution of (2.3) with initial data
given by c?(O) = rflsjn. From (2.4) we see that the time scale for this

class of solutions depends on the sign of « - 1. In fact, if a = 1, we get
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global existence for the general initial value problem (with initial data

having finite density) and nonexistence of global solutions if a > 1 [3].

For the kernel (2.2), let ¢! be the solution of (1.1) with initial data cj(O)

= 611. It is shown in [9] that the appropriate scaling is
c:j(t) = n-lcj(nza-it), c:(t) = 0 otherwise. (2.5)

From (2.5), we see that a« = 1/2 is the critical parameter. Global solutions
for the initial value problem exist for o = 1 (see [8} for a proof), but as
remarked above, density conservation breaks down after a finite time if a >
1/2. It is interesting to note that if a« > 1 we can still have global

existence for this case.

(b} Let a = 0 for all Jj,k so that we consider the linear fragmentation
equations. For any initial data with finite density, (1.1) has a density
conserving solution. However, for a large class of fragmentation coefficients
(for example b = (j+k)B, B > ~1), equation (1.1) has solutions with density
ed for any AJ,I; 0. In particular, sblutions need not be unique. These
spurious solutions are not of physical interest and this leads to the
mathematical problem of finding a criterion for selecting the correct solution

for the general equation (1.1).

(c) Consider the Becker-Déring equation for which a ., = bJ,k = 0 if both j
and k are greater than 1. The mathematical theory of these equations has been
studied in [1]. In this case the density is always a conserved quantity. The
asymptotic behaviour of solutions is interesting both mathematically and for
applications. Under certain hypotheses on the rate coefficients and the

density of the initial data Py we have that

0
J cj(t) > Y JjLimc (t) = P,

P, = 5
1 j=1 toe

[

Bt~ 8

J

The excess density p - P, corresponds to the formation of larger and larger
clusters as t » » and may be interpreted as a transition from microscopic to
macroscopic clusters. Mathematically this can be identified with a weak but
not strong convergence as t » w. See also [10] for an analysis of metastable

solutions and [2, 11) for some technical refinements.
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§3. RESULTS

In the previous section, some of the analytical difficulties associated
with (1.1) were discussed. In order to generalise the results for the
Becker-Déring Equation to the more general equation, we have to restrict
attention to a subclass of coagulation-fragmentation kernels. In this section
we outline some recent results concerned with existence and density
conservation [3]. We first introduce some notation. Let

+

00
X ={y-= (yr) : llyll < w, each y, = 0}, Iyl = ¢ r Icrl.

r=1

THEOREM 1 Assume that aj . K(j + k), for all j,k where K is a constant.

Let c, € X'. Then there exists a solution ¢ of (1.1) on [0,0) with c(0) = Sy

We prove the above result by taking a 1limit of solutions of the finite

dimensional system

c=% [a c ¢ - b c]-Z[a c. ¢ ~-b c 1 (3.1)

where 1 = j = n.

In general, even if aJ,k =< K(j + k), solutions of (1.1) are not unique and
do not conserve density. Thus a criterion is needed to single out physically
meaningful solutions. We call a solution to (1.1) admissible if it is the
limit of solutions to the truncated system (1.1). The next result shows that
for 2 = K(j + k), this criterion excludes the non-physical solutions
described in the previous section in that any admissible solution conserves

density.

THEOREM 2 Assume that LI < K(j + k) and that c¢ is an admissible

solution of (1.1) on {0,T). Then for all t € [0,T),

o0 o0
Tic(t) =% g c.(0).
=1 3 PR

It is also useful to have conditions under which all solutions of (1.1)

conserve density.

THEOREM 3 Assume that for some n z 0 and X = 0 we have

(i) a =r +r +a where {r } is a nonnegative sequence and
Jik 3 k 5k b
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aLk = K(j + k) for all j,k = ng-

P
(if) ¥ J br_Jj =Kr, rz2 n where p is the integer part of (r + 1}/2.
=1 ’

o
Then if ¢ is a solution of (1.1) on [0,T) with Py = rJ cj(O) < o,
=1

o
Y cj(t) =P, for all t € [0, T).

j=1

The hypothesis (ii) has an interesting physical interpretation. If surface
energy effects are important then it is unlikely that a large cluster of size
J + k will break up into two large clusters as this would increase the surface
energy by a large amount. Thus bjk should be small if j and k are both

large. Condition (ii) is a precise formulation of these heuristics.
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A Geometric Approach to the Dynamics of u; = eu,. + f(u) for small ¢
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1. Introduction.

In some important cases the differential equations describing the evolution of a physical
system contain a small parameter € > 0 and the equations depend on ¢ in such a singular
way as € — 0, that it is impossible to define limit differential equations which capture the
global limit behavior of the system. In fact as € — 0 the dynamics of the system becomes
more and more complex so that there is no limit dynamics and therefore no limiting
differential equations. Examples of this situation are the Navier-Stokes equations (with ¢
the inverse of the Reynold’s number) and certain differential equations from the theory of
phase transitions. In dealing with problems of such a singular nature, one can still try to
define some limit dynamical behavior for ¢ — 0, provided attention is restricted to special
features of the dynamics which happen to possess some kind of continuous dependence in
€ as € — 0. The aim of this work is to show how this can be done effectively in the case

of the scalar parabolic equation

(1) { U= €uzs + fu), z¢0,1),

u, =0, z=0,1.

*Supported in part by The Science Alliance, a Program of the Tennessee Centers of Excellence and The
National Science Foundation.
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This equation is the gradient system corresponding to the Liapounov functional

J(u) = /0 1 (; e F(u)) d

with f = —F", and it is perhaps the simplest mathematical model for the coexistence of
two phases of the same substance at the transition temperature. In this context v is an
“order parameter” which is related to the microscopic structure of the matter in such a
way that u near -1 corresponds to one of the two phases (solid) and v near 1 corresponds
to the other phase (liquid). F(u) is the specific free energy of the matter and is assumed
to have two equal minima at u = £1. This corresponds to the fact that by definition at
the transition temperature the two phases have the same free energy. The term ¢?u2/2
in the expression of J(u) is added to penalize high gradients of the order parameter and
therefore to model the tendency of the substance to minimize the number of interfaces
separating the two phases. More information about equation (1) and more sophisticated
models for phase transitions can be found in [CF] [FG] [G1] [G2].

Equation (1) is an example of the singular situation described above. It is well known
that it generates a dissipative semiflow in several function spaces (for instance in W1?)
and that it possesses a global attractor A, [He] [H]. There is no global limiting system as
e — 0, and in fact A, goes through a cascade of bifurcations with its structure becoming
increasingly complex. For instance the number of fixed points (stationary solution of (1))
increases without bound as ¢ — 0 and the same is true for the dimension of A, ([rHe] [H])
Therefore instead of considering the whole attractor, we fix our attention to the unstable
manifolds of equilibria and try to analyze what happens to these sets and to the dynamics
on them as ¢ — 0." We show , Theorems 1 and 2 below, that, for ¢ < 1, a large part, WN,

of the unstable mainfold W¥(¢n) of an equilibrium ¢én of (1) with N zeros is made of
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functions which are approximately step functions with values -1 and exactly IV transition
layers where sharp jumps occur. We also show that the dynamics on WN is described by
a system of ODEs which also determines the motion of these interior layers. Since this
motion is very slow for ¢ < 1 (speed of the order O (e_f) for some ¢ > 0) W is called
a “slow motion mainfold” SMM. The equations describing the dynamics of interior layers
were derived in [FH] by solving an equation for the approximate description of SMM. We
refer to [FH] also for a general discussion of the global dynamics of (1) for ¢ < 1. The
derivation of the equations of motion of the transition layers has been established in [CP].
By deriving appropriate estimates these authors are able to construct, a locally positively
invariant set which provides a good approximation to our invariant set Wy

The technique we use in the proof of theorem 1 is based on geometric ideas contained
in [FH]. See also [F] for some related work on the dynamical equivaience between scalar

parabolic equations and certain systems of ODEs.

It turns out that the mainsteps in the proof of theorem 1 have an abstract character

that allows a variety of applications as for instance proving the existence of a slow motion

manifold for the Cahn-Hilliard equation [ABF].

2. Notation and main results.

To state our results on the asymptotic behavior as £ — 0, of unstable mainfolds of

equilibria of equation (1) we need some defintions and some notation.

As stated above we assume that F has two equal minima at u = +1. We also assume
that F is continuous and that f = —F" has only three nondegenerate zeroes. For simplicity

we shall work under the hypothesis that f is an odd function. The assumption that F has
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two equal minima at u = £1 implies the existence of a unique solution U to the problem

@ { U, + F(U) = 0, zeR

U(0) =0 limy oo U = +1,

This solution corresponds to the existence of a heteroclinic connection between (—1,0)
and (1,0) in phase space for equation (2). Clearly U depends on ¢ and it is in fact a
function of x/e. To keep the notation simple we don’t make explicit this dependence
of the function u and of many other functions considered in the rest of the paper. For
any small number p,p > 0 let Tp C RV be the set of vectors £ = (£1,...,€N) defined by
Top={£0<é < - <&y <1&ip1~& >2p,5=0,...,N}, with & = —£1, Eng1 = 2—En.

Let n; = (§i41+&:i)/2i=0,...,N. For each ¢ in T'p define u¢ : [0,1] = R by
(3) uf(z) = (-)MU(z - &), zelni-1,m], i=1,...,N,

u¢ is a continuous function with a piecewise continuous first derivative. The map ¢ — ué
defines a N-dimensional imbedded manifold W in L? = L?(0,1). If f is of class C? then

W is a C'*! manifold. We have in fact the following Lemma

LEMMA 1. Let a small number p > 0 and an integer N > 1 be fixed and assume f is C?.

Then

Cetd < |l < CTet}, j=0,1

lluf ~ ufll < Ce™2|€ - ¢

for some constant C,C" independent of €, eTp, uf := %’-&_

PROOF: By the definition of u¢ it follows that u$(z) = (=1)'U,(z—&), ze(ni—1,m:); wS(2) =

0,z ¢ [i—1,7:]. From this and simple estimates on U the lemma follows. I
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Let ¥ = (11,...,7n) : [p = RN be the function defined by
v v .
(@) (&) =eK [exp (~2(t1 - §)) —exp (- 26— &-1))], =10
where ¥? = ~ f!(£1) and K is defined in terms of the function
O o) = 2F(w) - F(-D) =2 [ 1

by
1( 1
R A )
b ot
In the special case f(u) = u(l —u?) it v = V2,K = 34442. We can now state our main

results.

THEOREM 1. Let a small real p > 0 and an integer N > 1 be fixed. Then for each ¢ > 0
sufficiently small there exist functions
Tp>¢—afe W2,
Tp 3¢ —4(E)e B,
with the following properties
(i) € — a%,& - 4¢(¢) are Lipschitz continuous.
(i) W = {u|u = @,£eTp} is an invariant manifold for the dynamical system defined
by (1) in W12,
(iii) The flow on W is described by the ordinary differential equation,
€=
(iv) the following estimates hold
1€ ~ w$llws.2 = O(exp(~26%)),

15(9) - 7(©) = o(exn(~2 5¢)

where §¢ is any number less that Imin(¢; — £_y).
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THEOREM 2. The invariant manifold W = {u|u = @, £eI'p} defined in theorem 1 contains

a unique stationary solution u€ of (1), uf is hyperbolic and W is an open subset of W"(uE).

In the remaining part of this paper we describe the proof of Theorem 1. Theorem 2 is

essentially a consequence of Theorem 1.

PROOF OF THEOREM 1

In this section we present a proof of Theorem 1. Our intention here is to stress the
systematic character of the proof by presenting only the main ideas and by discussing the
simplest situation. Therefore in the proof we shall restrict ourselves to the case N = 1. A

fully detailed proof for the general case N > 1 will appear elsewhere.

Step 1: Construction of a reference problem.

We aim to construct a reference problem (1)* such that, as far as existence of slow
motion mainfolds is concerned, equation (1) can be considered a regular perturbation of
(1)*. As we shall see, this can be done because, unlike sets containing single equilibria or
the whole attractor, SMM’s are indeed the right objects to be studied as ¢ — 0. In fact
they contain all directions of asymptotically vanishing eigenvalues and therefore behave
as “normally hyperbolic sets”, uniformly in ¢ — 0. Lemma 2 below makes this statement
more precise.

A natural choice of the reference problem is the following,.

{ up = gy + f(uw),  x€(0,1)
us(z) = do(u), uz(1) = é1(u) ,

where ¢g, ¢1 : W2? — R, are smooth nonlinear functionals satisfying the conditions

(1)

(6) do(uf) = u(0); $1(u®) = uf(1) .
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From the definition of ué and u it follows that u$(0) and uf(1) are 0(exp(—%p)). This
implies that, as can be easily shown, we can choose ¢y, ¢; so that they are globally bounded
by 0(exp(—%p)). Therefore we can expect that, for ¢ < 1, the dynamic of (1) should be
close in some sense to the dynamics of (1)*. On the other hand it is clear that by (6),
and the definition of u, W is an invariant manifold for (1)*. Actually W is a manifold of
stationary solutions of (1)*. It is therefore to be expected that for ¢ < 1 equation (1) has
an invariant manifold W near W on which the motion should be very slow.

We remark that the choice of the reference problem can be made in many different ways.
To give an example, one could define #¢ = yu¢ with z : [0,1] — [0, 1] a C™ function chosen
so that #¢ satisfies the boundary conditions. Then the natural reference problem should
be

(1**) { U = € Ugg + f(u) + ¢(u)’

uy =0,z =0,1,
where ¢ is a nonlinear functional satisfying the condition

() = —(*a, + f(a)) .
This condition would in fact inply W = {u|lu = 4%} is a manifold of equilibria for (1)**
and in view of the fact that [|¢(@i¢)||z2 = O(exp(—%p)) one should expect a slow motion
manifold W near W.
Step 2: Construction of a first approximation for W and for the flow on it.

On the basis of the discussion in step (1) it is natural to look for an invariant manifold W

of equation (1) which is a graph over W. Therefore we construct a tubular neighborhood

N of W by setting

u=uf+ v,
(™) { <v,u§> =0,
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where {-,-) is the standard inner product in L? and the subscript ¢ denote differentia-
tion with respect to £&. A standard application of the implicit function theorem shows
that (7) define a smooth change of variables from an open neighborhood N of W onto
an open neighborhood of the zero section v = 0 in the linear fibration F = {FE},=
{u{ueL?(0,1), <u, u§> =0}. It can also be shown that the size of N and of the correspon-
ding neighborhood can be taken independent of ¢ [CP].

A function ¢ — @#€eC?[0,1] defines an invariant manifold W C L? for (1) which is C?
close to W if and only if there is a function ¢ — ©¢ which is C close to the zero function

and satisfies
(uf +9§) 7(6) = 2 (us, +98,) + F(ut + 8%)
(8) 8 = —uf, £=0,1
(3644) =0
for some C? function ¢ — 4(¢).

We expect ¢, ﬁg,*}'(f) to be very small quantities for ¢ < 1. Therefor? a good appro-
ximation to #¢,4(£) should be obtained by solving the linear problem that one gets by
retaining in equation (8) only linear terms in (9¢,% ¢,4(£)). Since by definition of uf we
have e2u$, = — f(u?), this linear problem is

ufc(€) = e%vf, + f'(u)of
9 vé = —~u§, z=0,1

<v5 ,u§> =0
where we have used the notation c, v¢ instead of 4, #¢ to remark that solutions to equation

(9) are only approximations to solutions of equation (8).

Proposition 1. [FH} Assume feC® and let a small number p > 0 be fixed. Then there

is an € > 0 independent of £el'p such that for any ¢ < € and any €el'p equation 9) has a
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unique solution ¢(¢),v¢. The function p* = u® +v¢ is a C* function. The function ¢ — ¢(£)
is C?, the function ¢ — p¢ is a C? function as a function from I'p to W*2, Moreover the
following estimate holds
v
o(€) = €)1 + O(exp (-28¢)), €eTp
where v is the function defined by 4) for N = 1 and §¢ any number < min(¢, (1 — £)).

The following proposition is a precise statement substantiating the conjecture that the
set W should behave as a normally hyperbolic set even in the limit for ¢ — 0 . For £el'p

we let T’{,C—f be the projection of L? defined by

£
(10) ﬁacﬁ = <<:§:1:§>> ug, .Q—f =T -7P.

Proposition 2. Let a small p > 0 be fixed. For each éel'p and for each ¢eC?[0,1] N Fe,

$s =0,z =0,1, let A'$ be defined by
(12) Ao=T° (2. + f(u9)9)
Then A° can be extended to a selfadjoint operator of F = .Q-EL2(0, 1) and there is a

constant C' > 0 independent of £ and ¢ such that

(12) spectr A* < ~C

PROOF: For a proof, based in part on arguments of [NF], see [ABF). A different proof
using the angle argument is given in [CP].

Lemma 2. Assume feC3. Then, ife > 0 is sufficiently small, the following estimates hold

. d
(i) IZ55 ¥lws < C exp(~=6%), j=0,1,2
(i) @)l < C exp(-i’zgaf),xe(g —eheved)

for some constant C > 0 independent of ¢, £.
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PROOF: Case j = 0 of (i) follows in a standard way from equation (9) and Proposition 2.
The case j = 1,2 is then obtained inductively by differentiating (9). The inequality (ii) is
proved by analyzing the explicit expression of v¢ given in [FH].

Before proceeding to the next point we make some remarks on the meaning of the
approximation to the manifold W constructed above. In fact we can ask how good an ap-
proximation should be in order to establish existence of 4 by means of invariant manifold
theory. We believe that the degree of accuracy of the approximation is dectated by the
accuracy with which we wish to describe the vector field on W. If we merely want to show
that this vector field is O(exp —£) the first approximation to W can be identified with the
mainfold W and the vector field 4 on W can be approximated with the zero vector field.
If instead one is willing to show that 4 = v+ e with e satisfying an estimate as in Theorem
1, then the first approximation must be chosen more carefully as we have done above by
solving equation (9). If one wants to move a step further in the asymptotic expansion of e
then the first approximation constructed above will not be sufficiently accurate and a bet-

ter approximation is needed. A sequence of successive approximations (cf,u¢*),k = 0,1,

can be constructed by setting

L =c v =0
ud* = uf ot bk k= 1,...
and by computing ¢, w* by solving the problem

ugck = 2wk + f(u)wd* +r (g’ck—l,wf,k—l’wgyk—l)

wi’k =0, £=0,1, <w€’k,u§> =0
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where
= § 13 & (0 €Y € £ 13
r(é,a,9,7) = f(u* + 0% +y) = F(u8) = f1(u)(0° + y) + a(ug +v¢ + 2)
Notice that Proposition 2 above implies this problem can be solved and that

w* = (1—4{)—1@{ 'r(£,c"_1, wf,k—l, wg,k—l) ,

ehuf = Pl + £/ (wwt* + (6 &, wbA L uft )

As a final remark we observe that one could try to use the above procedure for computing
(c¥,u$*) and obtain the solution (4, 4¢) as the limit of (c*,ué*). This approach cannot
be successful without some adjustment since it entails differentiation of w with respect to
¢ and therefore a loss of one derivative at each step. It is likely that some modification of
the simple iteration scheme above and an application of the hard implicit function theorem
can resolve this difficulty. Here we follow a different approach based on invariant manifold

theory.

Step 3: Construction of an invariant manifold W near W = {ulu = p¢ = uf +
v, Eelp}.

Standard methods of invariant manifolds theory do not seem to be directly applicable to
the present situation. Therefore, several adjustments of the standard approach are needed
which complicate the construction considerable. As a result we develop a technique which
can be used also in other similar problems in singular perturbation theory. We describe

this technique by subdividing Step 3 in several points.

POINT 1: Introduce new coordinates (£, w) in a tubular neighborhood A of W and derive

from equations (1) differential equations for £, w.
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As was done before with respect to W we can define a tubular neighborhood A of W

by setting

u= pf +w,
(13) {

<w,p§> =0.

This equations define a smooth change of variables from A onto an open neighborhood of

the zero section w = 0 in the linear fibration
F = {F%,£eTp}, F¢ = {w/wel?(0,1), (w,p§> =0} .

For £eTp let P4, Q¢ be the projection on L? defined as in (10) with ug replaced by pg. By
letting u = p¢ + w in equation (1) we get
(14) p§ €+ we = w,. +€2p8, + f(0f +w) .

By definition of p¢ and equation (9) it follows
(15) e?pt, = ufc(€) — f(uf) — f'(ué)ot .
Therefore, if we take the scalar product of equation (14) with pg, and solve with respect

to £, and taking account that (w, p§> = 0 implies

(16) (wpf) = € (w,pfy)

we obtain

(17) € = o(£)al€, w) + (&, w) = 8¢, w)
with

_(i_ <”5’P5>) ( _ﬁf"_’@)
a(é,w) = (1 <p§,p§> / 1 <p5,p§> )
2wy, + f(Pf + w) — f(uf) - f'(“f)vf’p§>

o) (1~ )

Pe) P¢

b(¢,w) = <




65

By projecting equation (20) onto F¢ = Q*L%(0,1) we get, after using again (12) (16) and

(17) and simple manipulations.

(18) We = Afw + 0(an)K€w + h(frw) s
where
(19) Afw = Qe(ezw" + f'(pf)w) ,
(20) Kéw = <w’P§£> Pt
w=— : s
<p§,p§>
(21) h(€,w) = Q(f(uf +v%) — f(ut) — f'(uf )+

QU +w) — F(5%) — F'(p*)w) + c(€)Q%u .

The system of differential equation (17), (18) is equivalent to equation (1) in the tubular
neighborhood of I'p where the smooth change of variable u — (¢, w) is well defined. Notice

that at each time ¢ the solution (£(¢), w(t)) satisfies the condition
w(t)eFED

This is a consequence of the presence of the expression 8(¢,w)K¢w in the right hand side
of (18).

In the following we shall assume that the linear fibration F has been smoothly extended
in such a way that for £ < £,F¢ = F”, and for { > 1 — £, F¢ = F'~7. We shall also
assume that the function 6,k in (17) (18) extend to this fibration in such a way that for
€ ¢ Topa : 6(6,) = 0, (€, w) = 0.

The following lemma gives bounds on the functions 8, 2 and on their Lipschitz constants.
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Lemma 3. The right hand side 8(£,w) is a smooth function of (¢, w)e Rx C*[0,1]. Moreo-
ver the conditions

lwllr < € exp(~= p) (w,5f) =0,
imply
pewl < e (-2 ),
oete. ol < € e (-2 5) |
6(6,0)4] < C exp (=% p) l4llcs ,

for some constant C independent of £, w, €.

In the statement of Lemma 3 and in several other places in the following we use the

syfnbol C or M or u to denote a constant which may not be always the same.

Lemma 4. The expression h(€,w) on the right hand side of (18) defines a smooth function
h((-,+)) : R x Wb2 into L%, Moreover the condition

v
flwliwz < C exp (—;p) )
implies

2v
Il < exp (-25) |
2v
I|h€(£, w)”L2 <C €xp (__s-p) )
v
Ihu(é w)dllzz < € exp (==) gllwa ,

for some constant C' independent of £, w, €.

POINT 2: Define a smooth family of linear homeomorphisms ®(¢, €) : F&€ - F¢ identifying
the fiber F¢ with the fiber F¢.
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These maps are of central importance in the derivation of the estimates needed to show
that system (17) and (18) has an invariant manifold. The basic use of these maps is for
comparing values of a section £ — o*¢F¢ at two different values ¢ ,E.

Let us consider the equation

<¢’p§f> €

pf 9
(pﬁ,p§>

this can be regarded as an ordinary differential equation in L?. Since K ¢ is a smooth

(22) ¢e =Ké¢=—

function of ¢ and K¥¢ is bounded in L?, equation (22) defines a group ®(¢,€) in L. The

restriction of ®(¢,£) to F% that we again label ®(£,£) is a map onto F¢. This follows from

£\ £ £\
<¢aP¢>£ = <KE¢,P5> + <¢a?¢g> =0.
We also note that ®(¢,€) : F&€ o Féisan isometry because for qSefE we have

and therefore ||®(¢, £)é|| 2 = ||4|Iz2, $eFE. In the following we shall need also an estimate

of the norm of ®(£,£) as a map from L? onto L? and also an estimate of the differnce
Lemma 5. Assume that ¢, are in a compact interval I. Then there exist numbers C, p > 0

independent of ¢,€,¢ and such that
”Q(&Z)Qb - ¢”W2-2 < c €_”|€ - zl "‘MIL2 )
8¢, )llzz < (1+C eI =€) [1$llz2

Moreover, if $eC* or ¢eW?2, the second estimate holds with the C? or the W2? norm

instead of the L? norm.
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The proof of this lemma is obtained by analyzing the system of differential equations

for the new unknowns aeR, geF¢ that can be derived by (22) by setting ¢ = apg +o.

POINT 3: Study the linear fibration equation
(23) s = A9+ EK 4 + 0,

where £ — ofeF* is a smooth section.

This study is based on Proposition 2 and aims to obtain exponential estimates analogous
to the ones needed in standard invariant mainfold theory. The meaning of equation (23)
is as follows: through equation (23) we associate to any given smooth function £(t) the

equation
(24) e = A50g + KD+ 04D

this equation is the analogous of a linear inhomogeneous equation in a Banach space in
the present setting of linear fibration. We can also consider equation (24) as an ordinary
differential equation on L2. From this observattion and standard theory [He] it follows that
equation (24) with o = 0 generates a linear semigroup S(t, s,£(+)) on L? or on the fractional
space X* C L? associated with the operator A¢ = e2¢.., D(A) = {d|peW 2, 4,(0) =
#+(1) = 0}. We shall assume a > 3 so that we have the imbedding X C C*.

Notice that, due to the presence of the term éK¢¢ in equation (23), ¢(s)eFE®) implies
that S(t,s,£(-))$(s)eFé(®). Therefore equation (24) with o = 0 defines a map S(t,s,£(+)) :

Fé) o ¢ for ¢ > s.

Lemma 6. Let £(-) : R — R be a C? function such that |£(t)| < C,|€(t)] < CeX, with

C, x > 0. Then for x sufficiently large, there exist positive numbers M, 8, independent of
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t,s,¢ and also independent of £(-) for &(-) such that the following estimates hold for e < 1

15(, 5, £(-))dlla < M exp(—B(t - 3)) [|¢l|e
5@, s, £(-))dlla < M(t—8)™* exp(—p(t —3)) [I8]].L2
To prove this lemma one first transforms equation (24) with o = 0 to an equation on
the fixed Banach space F¢(*) by means of the maps ®(¢,£) and then applies the results in
[He] for linear nonautonomous equations. Proposition 2 is the basis for the exponential
estimates. The constant § in Lemma 6 is related to the constant C in Proposition 2.
From the exponential estimates in Lemma 4 it follows that if £ — o%eF?¢ is a bounded

section and if £(-) is a C? function satisfying the hypothesis of the lemma. Then equation

(24) has a unique solution which exists and is bounded in (~co, t},

80600 = [ 5,60t ds

In the remaining part of the proof we shall need to compare the operators S(%,s,&(+)),
S(t,s,&(-)) corresponding to two different functions £(-),(-). This comparison is done

through the maps ®(¢,€) and is contained in the following lemma.

Lemma 7. Let (-),£(-) : R — R be C* functions satsifying the assumptions in Lemma
6 with x sufficiently large and let ¢eFE("). Then there exist positive numbers M, u,

independent of s,t,¢,£(-),€(-) and such that, fort > s
I[®B(E, &, 8)S(, 5,€(-))B(4, €, ) — S(t, 8, E(-)lla <
t
Me#e P0=9) 14|\ . / (t =r)7%(r = 8)7*[&(r) = &(r)ldr

where 8(¢,,t) := B(£(2), &(1)).

The proof of this lemma is based on Lemma 5 and 6 and is contained in [ABF].
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POINT 4: Obtain an invariant manifold for system (17) and (18) as a fixed point of a
suitable contraction map.

Now we try to adapt the classical Liapounov’s approach to invariant manifolds to our
situatioﬁ. Our arguments are modeled after [He]. Let T be the set of sections £ — gfeF*¢

which satisfy the conditions

(25) { lo*lla < exp(~2p) =D
[2(,€)o* — ofla < AlE~E, &ER
for some A independent of €. With the norm |||o||| = sup|lo?||« the set of sections £ —
£

o eF¢ which are bounded in X* is a Banach space. The set £ defined by (25) is a
compact subset of this Banach space. Condition (25) is, in our linear fibration setting, the
analogous of the usual Lipshitz condition in the setting of Banach spaces. For o € ¥ let

£(t) = £(t;m,0) , be the solution of the differential equation

e e
) fE=dteot,

£0)=n.
From Lemma 3 and the fact that 8 vanishes for ¢ ¢ I'p it follows that £(-) is a C? function
which satisfies the hypothesis of Lemma 6. Therefore there is a unique solution bounded

in (—o0,1] to the linear inhomogneous equation
(27) we = AXw 4+ 6(£(t), 0" D) KO 4 h(E(2), 0t D) .
We define (Go)" to be the value at ¢t = 0 of this solution
0
(28) (G0 = [ 50,5, EC)A(E(s), 0% ds

We now show that for ¢ sufficiently small equation (27) defines a map G : £ — ¥ and

that this map is a contraction. Before describing this part of the proof of theorem 1 we
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remark that in equation (27) £(s) and £(-) stand for £(s;n,0) and £(+;n,0) and therefore
the dependence of (Go)" on 0,7 is rather involved. In the following, to keep the notation
as simple as possible, we shall write S(s,£(-)) instead of S(0,s,£(0)) and simply &(¢,8)
instead of ®(¢,,t) = ®(£(t),&(t)) being clear from the contest at what time the functions

¢, € must be computed. We shall use the notation p~ to denote a positive number < p.

Lemma 7. Let £(t) = £(t;n,0) the sqlution of (26) and let £(t) = £(t;7,7) be the solution

of (26) with o = &,n = 7. Then, provided 0,5€% and t < 0, the following estimate holds
|€(t) = Et)] < exp(=dt) (In = 7] + |llo =7l — llo — Il ,

where d = C exp (—fp") for some C > 0 independent of ¢.

Lemma 8. Let h(£,w) be the function defined by equation (21). Then there is a number

C independent of e such that for any ¢,€ € R and for any 0,7 €X,

18(E, E)h(€,0%) — h(E, o*)llz> < d(J — € + llo —7II) -
with d = C exp (—fp‘).
The proofs of these two lemma is fairly standard and it is based on Lemma 4 and 5.

Proposition 3. Provided ¢ > 0 is sufficiently small, equation (27) defines amap G : & —

Y which is a contraction.

PRrOOF: From equation (27), Lemma 4 and 6 it follows
0

(28) G lla < &8 [ (—o)ePds
—o0

which proves ||(Go)"||o < D if € > 0 is sufficiently small. To show that under the same

assumption Go satisfies also the other conditions required for a section in ¥ and at the

same time to prove that G is a contraction on ¥ we estimate the expression
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(29) &(7,1)(Go)" — (Go)" =

0 -
| (8086, €0me,o%) = S(o, ECE T ds =

—0C

/_ [2(7,7)S(s, €(-))B(E, €) — S(s,E())] B(E, €)A(E, 0 )ds +

[ S8 [2G 00 - hET] s
where we have written simply h(¢, 0¢) instead of h(£(s),0(?)). Let I, I, denote the two
integrals in the last expression in equation (29). Then it follows from lemmas 6, 5, 4, and
7 that for e € 1

0 0
Nilla < d2Me™#(In -7l + ||lo —E“D[_ e(B~d)s (/ (=r)"%(r - s)_") drds

0
2]l < d Me™#(|n =7l + |llo — =) eP=D3(—s)7ds .

—00

therefore we have
|27, 1N Go)" — (G7)"||a < dMe™(|n — 7] + ||le —F]]) .

Since d = C exp (—‘ei p‘) this inequality with ¢ = & shows that, for ¢ € 1, Go also satisfies
the second condition for being an element of . The same inequality for n = 7 shows G
is a contraction on . Therefore there is a fixed point & €X. That this is an invariant
manifold for (17), (18) and therefore for (1) is standard.

To conclude the proof we note that from the discussion above it follows ||6¢|a <

C exp(—2p~),&eTp. Since this is true for any p < 31 we have

16 =C exp (~26¢) .
The estimate for the difference 4 —+ follows from 4(¢) = 6(¢,6¢), from (30), Proposition 1

and Lemma 2 . 1
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ON THE ISOTHERMAL MOTION OF A PHASE INTERFACE.

Morton E. Gurtin
Department of Mathematics
Carnegie Mellon, Pittsburgh PA 15213

1. INTRODUCTION.

A recent series of papers (Gurtin [1-3], Angenent and Gurtin [4])
began an investigation whose goal is a thermomechanics of two-phase
continua based on Gibbs's notion of a sharp phase-interface endowed
with thermomechanical structure. In [1] a new balance law, balance of
capillary forces, was introeduced and then applied in conjunction with
suitable statements of the first two laws of thermodynamics; the chief
results are thermodynamic restrictions on constitutive equations, exact
and approximate free-boundary conditions at the interface, and a
hierarchy of free-boundary problems. The simplest versions of these
problems (the Mullins-Sekerka problems) are essentially the classical
Stefan problem with the free-boundary condition u=0 for the
temperature replaced by the condition u=hK, where K is the mean
curvature of the free-boundary and h>0 is a material constant. This
dependence on curvature renders the problem difficult, and apart from
numerical studies involving linearization-stability, there are almost no
supporting theoretical results.

For perfect conductors the theory is far more tractable; there the
temperature is constant, and the underlying free-boundary problem
reduces to a single set of evolution equations for the interface. The
paper [4] develops further this theory of perfect conductors for
interfaces that evolve as curves in RZ

It is the purpose of this review to discuss the chief results of
[1] and [4]. For convenience, we follow [4] and restrict attention to
the isothermal evolution of interfacial curves in R%

2. BASIC LAWS.

We consider a bady which occupies all of R? and consists of
two phases separated, at each time t, by a smooth interface &(t)
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which evolves smoothly in time. We assume that &(t) is closed,
write Q(t) for the bounded region enclosed by «(t), refer to the
phase occupying Q(t) as the reference phase, write N for the
outward unit normal to 0Q(t)=4(t), and choose the unit tangent T
such that {T,N} is a positively-oriented basis of RZ. Generally, we
will consider T=T(8) and N=N(8) as functions of the angle 8
from a fixed coordinate axis to N. We let s denate arc length on
&(t) (with s increasing in the direction of T), and write K=N«T,
for the curvature of &(t), V for the normal velocity of &(t) in
the direction N.

The micromechanics of the interface is described by two
functions: C(s,t), the force within &(t); b(s,t), the force exerted on
&(t) per unit length. C(s,t) is the capillary force; if we write

C =0T + EN, (2.1)

then o(s,t) is the surface tension, E(s,t) is the surface shear.

We refer to the normal component b of b as the normal
interaction; b represents the normal force exerted on the interface
by the bulk material. Motion tangential to the interface depends on
the choice of parameterization and is hence irrelevant to the physics;
the intrinsic evolution of the interface is normal to itself. As is
consistent with a "constraint” of this type, we leave the tangential
component of b as indeterminate.

Balance of capillary forces has the local form ([1], eqt. (3.3))

Co +b=0, (2.2)
an equation with normal component
Es + OK + b = 0. (2.3)

We associate with each interfacial motion an interfacial energy
f(s,t) per unit length. In addition, the individual phases possess bulk
energies; in accord with our tacit assumption of isothermal conditions,
we assume that the energy of each phase is constant, and we write F
for the energy of the reference phase minus that of the other phase.

The second law for any subregion R of the body is the assertion
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that the rate at which the energy increases plus the energy outflow
cannot be greater than the power supplied to R. This global statement
of the second law leads to the energy inequality ([1], eqt. (3.16))

fo-E8° + (C-KV + (b+FV < 0, | (2.4)

where, for any function g(s,t), g° represents the normal time
derivative of g following the interface.

3. CONSTITUTIVE EQUATIONS. THERMODYNAMIC RESTRICTIONS.

As constitutive equations we allow the energy, capillary force,
and normal interaction to depend on the orientation of the interface
through a dependence on B8, and on the kinetics of the interface
through a dependence on V:

f = f(8,V), C = C(B,V), b = b(8,V). (3.1

The first two relations characterize the interface, the last models the
interaction between the interface and the bulk material.

We require that all interfacial motions related through the
constitutive equations (3.1) be consistent with the energy inequality
(2.4). This leads to the following set of thermodynamic restrictions
([1], eqts. (4.5)-(4.7)):

(i) the energy and capillary force are independent of the normal
velocity;
(ii) the energy generates the capillary force through the relation

C(8) = f(B)T(B) + f'(BIN(B); (3.2)
(iii) the normal interaction is given by a relation of the form
b(B,V) = -F - B(B,V)V, p(e,vV) 2 0. (3.3)
Trivially, (3.2) implies that o(8)=1(8), E(8)=r'(8).
we assume that pB(8,V) is independent of V and that

1(8),8(8)>0; the second of which ensures that the interactive force
-B(8)V oppose interfacial motion.
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4. EVOLUTION EQUATIONS.

Balance of capillary forces (2.3) in conjunction with the reduced
constitutive equations (3.2), (3.3) lead to an evolution equation which
relates the normal velocity V to the curvature K;

BBV = [f(8) + f"(B)IK - F (4.1)

([1), eqt. (8.5), [4] eqt. (5.7); see also Brakke [5], Gage [6,7], Gage and
Hamilton [8], and Grayson [9], who discuss the equation V=K). The
relation (4.1), when combined with purely kinematical conditions for an
gvolving curve lead to a system of evolution equations for the
interface. For a convex section of the interface, this system reduces
to a single partial differential equation for the velocity V=V(8,t)
([4]1, eqt. (5.7)):

BBV, = [V + W(B)*[Vgg + VI, (4.2)
®(8) = [f(8) + £'(B)]1/5(8), W(B) = F/B(8).

For ®(8)>0 this equation is parabolic (aside from the trivial
degeneracy V=-W(B) at inflection points) and yields a theory similar
in structure to its isotropic counterpart based on V=K-F. There is,
however, no compelling physical reason to exclude energies f(8) for
which f(B) + f"(B)<0 over ranges of the angle 8; in fact, material
scientists often consider such ranges (Gjostein [10], Cahn and Hoffman
(11]). For f(8)+f"(B)<0, (4.2) is backward-parabolic and
corresponding evolution problems are generally not well posed. A
necessary condition for the statical stability of the interface is that
f(8) + f"(8) 2 0; accordingly, we use the terms strictly stable or
unstable according as f(8) +1"(8)>0 or f(8)+f"(8)<0.

S. STABLE ENERGIES ([4], §6,57).

Consider now interfacial energies that are strictly stable.
Steady solutions of (4.1) for which the interface is convex and infinite,
in the shape of a bump, are deduced in [4]. The bump recedes in one
solution and advances in the other; for the receding bump the kinetic
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coefficient can be arbitrary, but the advancing bump requires a
nonconvex polar diagram for f(8).

[4] analyzes the global behavior of a smooth interface as
measured by its perimeter L(t) and enclosed area A(t). The main
result is most easily stated in terms of a bounded solid in an infinite
liquid bath:

If the bath is not supercooled, then A(t)-0; if the
bath is supercooled, then initially small interfaces have (5.1)
L(t) >0, initially large interfaces have A(t)- oo.

In addition, for the case in which A(t)- oo, the isoperimetric ratio
L(t)?)/4mA(t) remains bounded as t-—oo. [t is shown further that
if (for a nonconvex interface) one defines a finger as a section of the
interface between inflection points, then the total number of fingers as
well as the total curvature of each finger cannot increase with time.
These results presume the existence of a smooth, simple (non self-
intersecting) interface. In this regard, it is clear that in certain
circumstances the interface can pierce itself as it evolves.

6. UNSTABLE ENERGIES ([4), §8,59).

[4] next considers energies f(8) which are unstable for certain
values of 8. Here it is convenient to introduce a global definition of
stability based on ideas of Wulff [12], Herring [13], and Frank [14].
Global stability is defined in terms of the convexity of the Frank
diagram, which is the polar diagram of the reciprocal function f(e)™";
the convex sections of this diagram are referred to as the globally
stable sections, the remaining sections as the globally unstable
sections. These definitions are consistent: f(8) is stable on globally
stable sections; f(8) 1is unstable somewhere within each globally
unstable section.

One way of treating unstable energies is to allow the interface to
be nonsmooth with corners that correspond to jumps in 8 across
globally unstable sections. Balance of capillary forces for
corresponding "weak solutions" of the evolution equations leads to the
requirement that C(B) be continuous across each such corner; this
requirement is automatically met when the corners are as specified
above.
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In contrast to standard results for a strictly stable energy, the
presence of corners leads to the possibility of facets (flat sections);
in fact, to the presence of wrinklings, where & wrinkling is a series of
facets with normals that oscillate between two fixed values. Such
wrinklings are dynamically stable: the lengths of the individual facets
do not increase with time.

The use of corners leads to free-boundary problems for the
evolution of the interface, as the positions of the corners are not
generally known a-priori. The free-boundary conditions are similar in
nature to those of the classical Stefan problem ([4], eqt. (9.17)). For
the special case in which Q(t) (and hence &(t)) is strictly convex
the angle 8 can be used as the independent spatial variable. This
greatly simplifies the problem as the angle-pairs that define the
corners are known a-priori; they are the angle-pairs that bound the
globally unstable sections of the Frank diagram. The underlying
problem then consists in solving (4.2) away from the corners with the
stipulation that

VN - VgT be continugus across each corner.

7. NONSMOOTH ENERGIES ([4], §10,811).

Material scientists often consider interfacial energies that are
continuous but have derivatives which suffer jump discontinuities
(Herring [13,15], Cahn and Hoffman [11]). Such interfaces are studied in
[4]; as before, corners are used to remove the globally unstable
sections. In agreement with statical results, discontinuities in f'(8)
lead to facets in the evolving interface. The result (5.1) remains valid
for nonsmooth, nonstable energies.

Following Taylor's [16] statical treatment of crystal shapes, [4]
considers crystalline energies, for which the globally stable sections
are isolated points (that is, for which the Frank diagram touches the
boundary of its convex hull only at discrete points). An interesting
property of crystalline energies is that their evolution is governed by
a system of ordinary differential equations of a particularly simple
form, involving only nearest-neighbor interactions. These equations
are solved for a rectangular crystal; the corresponding solution shows
that, in situations for which the crystal shrinks (cf. (5.1)), the
corresponding isoperimetric ratio generally tends to infinity, in sharp
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contrast to an isotropic interface, which shrinks to a round point (Gage
[6], Gage and Hamilton [8], Grayson [9]).
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Abstract: This report outlines the role of the weak topology and the representation of weak limits by
Young measures in proving the trend of dissipative infinite dimensional dynamical systems to
equilibria. Two examples are provided: (i) a weakly damped wave equation and (ii) an infinite

system of ordinary differential equations which model a liquid—vapor phase transition.

0._Introduction

Recently the subject of the dynamics of infinite dimensional dynamical systems has come in
for renewed attention. For example two new books have appeared devoted to this subject. i.e. the
monographs of Jack Hale [1] and Roger Temam [2]. In both of these books and most of the papers
devoted to the subject, the dynamics are usually considered in the strong norm topology of the Banach
space where the relevant flow exists. While this is natural for many applictions it excludes some

interesting cases where the weak topology may be more useful.

#This research was supported in part by the Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under Contract/Grant No. AFOSR—87-0315. The United States
Government is authorized to reproduce and distribute reprints for government purposes not
withstanding any copyright herein.

Dedicated to Jack Hale on the occasion of his 60th birthday.
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In two new papers [3,4] I have attempted to show how the weak topology combined with the
representation expected values of weak limits in terms of Young measures yields a new view on the
well known LaSalle Invariance Principle. (Zvi Artstein suggested the term "relaxed invariance
principle” for the argument and that is the name I have been using.) In this report I will sketch how
the relaxed invariance principle can be applied to two rather different problems. The first is the
problem of a weakly damped wave equation while the second arises from considering an infinite
system of ordinary differential equations which model the cluster dynamics of a liquid—vapor phase

transition. Of course the interested reader should consult [3] and [4] for details.

1. A damped wave quation
Consider the problem of the asymptotic behavior as t - « of solutions of the damped wave

equation

2
g._tg. ~ Au = -a(x)q(u,) on rR*xQ, (L1)

u=0 on R x2Q, (1.2)

where Q is an open, connected domain in IRN, N 2 1, with smooth boundary and a e L™(Q), 220

a.e.in Q. To guarantee that there is actually some region of damping we set
E = {xe Q; ax) > 0}
and assume
meas(E) > 0.

Since we desire existence and uniqueness of solution of (0.1), (0.2) with initial data

u(x,0) = uy(x),
xe (1.3)
ut(x,O) = ul(x) ,



84

with UO = [uo,ul] eH= H(l)(Q) X LZ(Q) we shall also assume q is globally Lipschitz continuous,
q(0) = 0. In this case (1.1), (1.2), (1.3) possesses a globally defined unique weak solution
U= [u,ut] e H

Mutltiplication of (1.1) by g% and application of Green's theorem yields the identity

t
UEUI ~ U2 = =2 z[ (a(- Yoo, )ds (14)

where (,) denotes the usual L2(Q) inner product and
UV = (utv) + v, U2 = U0y -

for U= [u,ut], V= [v,vt],

It is thus a trivial observation that the "energy" ||U(t)||2 is dissipated if q(€)§ <0 for all
EeR and q is not identically zero. We can then ask the question: what additional restrictions
should be placed on q to guarantee asymptotic decay to the u=0 equilibrium? Previous work on
this problem by Dafermos [5] and Haraux [6] has shown that monotonicity in g suffices but
monotonicity clearly is much more restrictive than one would expected is needed.

In [3] I outlined how a "relaxed invariance principle” can be used to obtain information on the
asymptotic behavior of (1.1)—(1.3). Here I sketch the basic and rather straightforward ideas. First I

state the main result.

Theorem 1. Assume a € L"(Q) with meas (E) >0, g is a globally defined Lipschitz continuous
function: R-R. Assume {& ¢ R; q(€) =0} is contained in either (—=,0] or [0,<). Then any weak
solution U(t;Up) = [u,ut] in H fordata Uye H converges weaklyto 0 in H as t~ o

The main idea of the proof is to ascertain the dynamics of (1.1)—(1.3) on the weak m—limit
set. Here the weak —limit set is defined to be m(Uo)z{ [yo,yl] € H; there exists a sequence {tn},
0> so that U(tn;UO) - [yo,yl] as n -} where = denotes weak convergence in H.

From the energy equality (1.9) we know the weak ®-limits set is non—empty.

So now fix [yO,yl] € a)(UO) and let {tn} be such that U(tn;Uo) - [yO,yl] as n-w,

Consider the translation sequence
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Un @) =U@+t n;UO) .

Since the Un are also solutions of (1.1)—(1.2) satisfying the initial conditions Un(O) = U(tn;UO) the
energy inequality

t
U1 - ue Ul = -2 ([ @Ot )y X (13)

is satisfied. Hence
U, 1 < 06U < 0]

and trivially on any interval [0,T] we have {Un} in a bounded subset of L2((0,T);H) which

implies the existence of subsequences

Vun = Vv weakly in L2(Q) ,

(1.6)

L A weakly in LZ(Q) ,

t
for some [v,v,] € L2(OT3H), Q= O x Q.
Using (1.6) we can now attempt to derive the dynamics on (o(Uo). First since

azun +

—8? - Aun = -—a(x)q(unt) on R"xQ, 1.7
+

u, =0 on R x0Q, (1.8)

we can pass to the weak limit in (1.7), (1.8) to find

a2v .
S-t—z — Av = weak llm(—a(x)q(l.ln » (1.9)
t

oo
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v=0 on RTx3Q. (1.10)

Next since ||U(t;U0)|| is a nonincreasing function of t bounded from below by zero the limit of

[UUQIl must exist. Hence lim [[U 2Ol = Llim UG UpI and from (1.5) we see
na« N-10

T
limt[ (a(-)atu ) ds =0. (1.11)
t t

N-tee

Unfortunately we cannot pass our limits through q since we do not wish to assume any special weak
sequential continuity of the map q:Lz(Q) - L2(Q). Nevertheless there is a ploy which allows us to
get around this difficulty. In fact it is precisely this step that may also be useful in other weekly
damped problems.

First recall a result of M. Schonbek [7] on the representation of weak limits in terms of Young

measures (see also Ball [8], Tartar [9], Young [10]).

Proposition Let O be an open set in R™. Let Wy OrRY bea sequence of functions uniformly
bounded in (LP(O))II 9 for some p > 1. Then there exists a subsequence {wnk} and a family of

probability measures [vy}yeo on RY so thatif fe CRYLR) and satisfies f(w) =o(|w|p) as

|w| -« then

flwy, ) = (v O0) = Jqf(?t)dv o (L.12)
R

in the sense of distributions. Furthermore if O is bounded the above convergence is in LI(O)

weak. (Here f(w) =o(|w|P) means |f(w)|/|w|P -0 as |w| -+ =) Now we can apply the

proposition to the sequence u L€ L2(Q). Thus there exists a propability measure Vy ¢ Such that
t th

q(““t) = Qv ) (1.13)

weakly in Ll(Q). Since Aq(A) is not necessarily o( |7»|2) we cannot apply the proposition
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direction to Aq(A). However we can use the following trick suggested by E. Zuazua. Define
sM =M, |A|<1,
= |qA)|, |Al>1.

Then Aq(\) 2 g) 20, g) =o(|A|%) and (1.11) implies

T
lim Z[ i a(og(u ds =0. (1.14)
- t
In addition we now have
g(unt) = (eMvy ) (1.15)

weakly in L1(Q).
We now pass to the limits in (1.9) and (1.14) using the representations (1.13) and (1.15).
Hence we see
32v .
T Av = —a(x) (g(?\.),vx,t) in Q, (1.16)
v=0 on 0Q,
v(0,x) = yy(x)
v (0) =y, (x) ,

and

(8M),v, (W) =0 (.17
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for almost all x,t, x € E,0 < t<T. But (1.16) implies that
supp v, (€ (§ e R; q(§) = 0}
for almost all x,t, x € E,0<t<T. Hence from our hypothesis on q
supp Vx,t C (—»,0] or supp Vx,t ¢ [0,0)

for almost all x,t, x € E,0<t< T, But this implies that g% is either non—positive or non-negative

aein E x[0,T] while from (1.16) and (1.17) we see v satisfies the undamped wave equation
2
g—t—%—Av=0 in R xQ
v=0 on R x9Q
v(0.x) = yo(x)

v, (0x) =y, (x) .

Finally an argument of C. M. Dafermos [5] shows that the only v satisfying the undamped wave

equation with above sign constraint on g% is v=0. Hence Yo=Y1= 0 and ww(Uo) = [0,0].

2. Dynamics of the Becker—Déring cluster equations.

Let cr(t) 2 0 denote the number of r—particle clusters (or droplets) per unit volume at time ¢t
in a condensing vapor. In the vapor clusters can coagulate to form larger clusters or fragment to form
smaller ones. An infinite set of ordinary differential equations describing the dynamics of these
clusters was proposed by Lebowitz and Penrose [11] modifying an earlier model of Becker and
Doring [12]:
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ér(t) =J _©-J) 121,
2.1

él(t) = —Jl(c) - 2 Jr(c) ’
r=1

where ¢ = (cr). Here 2y br +1 A€ the kinetic coefficients which are non—negative constants and

def.

J© =acic,=b 10

A general study of existence, uniqueness, continuous dependence of initial data, and the long

time trend to equilibrium of (1.1) was given in the papers of Ball, Carr, and Penrose [13], and Ball

and Carr [14]. In [13] the authors showed if a = O@) and c(0) is such that z c I,(0) <« then
r=1
(2.1) possesses a solution for all ¢ > 0 which conserves the density p = 2 rcr(t) for all te [0,).
r=1

Furthermore they showed in the cases of pure fragmentation (a = 0,b >0 forall r21) and

r+l

pure coagulation (a >0, b ., =0 forall r21) solutions converge strongly in the Banach space

T+l
©0 ©0

X={c 2 1c, <=}, |[c|| = 2 1c,, to an equilibrium solution P of (1.1), ||cp|| =Py

r=1 r=1
po= ) 10).
r=1
In the case of fragmentation and coagulation (ar >0, br 41> 0 forall r>1) they obtained a

def. r a
particularly important result (Theorem 5.5 of [13]). Namely if Q. = 'ﬂ(—%) and we assume

a.= O@/th 1), br =@/ r) 2.2)
then any solution c(t) of (1.1) approaches an equilibrium P of (1.1) componentwise, i.e.

cr(t) acg as t-o
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for some 0 < p < min(py,p ). (Here p is the density of saturated vapor defined as p = 2 rQrzﬁ
r=1
and z is the radius of convergence of the series.) The result is particularly striking when the initial

data c(0) is such that Py > Py Forin this case the initial density Po is greater than the saturation
density p ¢ and convergence of ¢ to cP cannot occur in the strong (norm) topology of X. For if it
did density conservation would imply p = Po and hence p > Py 2 contradiction to the fact that
there are no equilibrium densities greater than p ¢

A natural interpretation of this result is to regard the coagulation—fragmentation dynamics
when Pg>Pg asa dynamic phase transition. Namely we might regard the initial data c¢(0) to be in
a metastable set which evolves as t -« to a new equilibrium consisting of vapor with density p < Ps
and a liquid phase. The occurence of a liquid phase which is not accounted for in the original
equations (1.1) would explain the apparent lack of density conservation as t - «,

The proof of Theorem 5.5 of [13] is based on "invariance principle" Lyapunov function
argument. The crucial steps in applying the "invariance principle” in its usual form are have (i)
precompactness of orbits of the relevant dynamical system in a suitable metric space, and have both
(ii) continuity with respect to initial conditions and (iii) the existence of a continuous nonincreasing
Lyapunov function (with respect to the same suitable metric space as (i)). In their paper [13], the
authors showed (i) and (iii) followed naturally by use of the metrized weak* topology on the ball of
radius Py in X. However to show (ii) they were called upon to introduce the extra assumption (1.2).

In [4] 1 have shown that (1.2) can be replaced by the weaker hypothesis
a,= O(n), br =0() 2.3)

and still obtain the trend to equilibria described above. Specifically the following theorem was

proven.

Theorem 2. Assume a_>0,b >0 forall 1, a.=O(), b, =O() and that lim sup Q/F <. Let

T =00

¢ be any solution of (2.1) with V(c(0)) <~ where

- c
V() = ) el — 1)
T

r=1
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and

o

Po = z rcr(O).
r=1

Then there is an equilibrium state cP so that () - cP weak' in X as t- for some p with

O<sp< min(po,ps). If in addition lim Qi/r exists then p is unique for each such c(0)

I

independently of which solution ¢ of (2.1) we may consider.

Sketch of proof. The flavor of the proof is very much reminiscent of the arguments given for
Theorem 1. T sketch here the part on asymptotic decay to an equilibrium.

First we note that for any solution of (2.1) conservation of mass shows

el = ) re,® =} 7 ©) <=
r=1 r=1

and hence any fixed positive orbit in X possesses a non—empty wcak* @-limit set w*(c(O)). Fix an
element y e a)*(c(O)) and let {tn} be the associated sequence.

Now as in Theorem 1 we consider a translate sequence c(n)(t) = c(t+tn;c0) in X for t20.
We then recall the following result of L. Tartar [9] on the representation of wcak* limits in terms of

Young measures.

Proposition Suppose K is a bounded setin R™. Let Wy Q- RY be such that w €K ae. Then

there exists a subsequence {wn } and a family of probability measures {vx} xeQ OO0 R™ with
: k

supp v, € K, such thatif f is any continuous function as K, then
fw, ) (V) in L(Q) weak”,
k

where
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(v, £ = 1Lf(x)dvxou) :

Since
0< 2 br +15 _‘3 < const. z (r+1)cf,ﬂ < const. 2 (r+1)cg_% < const Po
r=1 r=1 r=1
and

0< 2 arcgn)cl(,n) < const. 2 c%n)cf'n) < const. p% ,
r=1 r=1

the sequences

r+17r+1

(7 80 T b o)

r=1

lie in a bounded set of K of R xRt for 0 <t <«. Furthermore a little work shows these
sequences are each uniformly bounded away from zero. So we can apply the Proposition on L(0,)

to represent the weak* limits of there two sequences by a Young measure vt(kl,kz). Choosing

(Y
additional sequences if necessary we then see there is a subsequence {c k } so that

oo -
¢ -c weak * L (0,)

and

t
cM=y, + i U, E&) —T@6Nds, 122



23

t
0=y, —lul(as» + (VA Ay ds @4

*
where we recall y is the fixed element of @ (c(0)).
Now from differentiating the Lyapunov function V(c(t)) along trajectories we have

t
V(c@®) + £ D(e(s)ds ¢ V(c(0)) forall £20

where D(c) is a non—negative quantity defined by

D(c) = 2 @c1eby e e) — falby 0 g))
r=1

But by Jensen's inequality D(c) is greater than or equal to the non—negatiave quantity
[ 2 416~ 2 br+1cr+1]w1[ z acyryl =l 2 b1l -
r=1

r=1 r:l r=1
2.5)

We now argue as in Theorem 1, i.e.
@) & @) )
Ve @)+ Z[D(c K ()ds < V(c(nk )

and since V{(c(t)) is a nonincreasing function bounded from below lim V(c(t)) exists. Therefore on
t-o0

any interval (0,T)

T

: (@)
lim i D K(s)ds=0
l’lk-) [
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and hence

T
i (V) Ayt A ))ds = 0

where we have used (2.5). Thus
Supp v, € {Ae RY xR*: )‘1 = 2} n [ST,a] X [BT,b] a.e in (0,1)

for some positive constants a,b,ST. Hence J 1_(E(t)) =0 forall te (0,T] and from (2.4) we see

c)=y forall te (0,T]. Sothe weak* w—limit set consists only of equilibria.

3. Conclusion

Two examples demonstrating the role of the weak topology in the analysis of infinite
dimensional dynamical systems have been given but I am sure there are many more. Such problems
will naturally occur when the dissipative mechanisms are very mild and subtle and when a priori
estimates are sparse. It is in these cases that the "relaxed invariance principle" will play a crucial role

in the analysis of long time asymptotic behavior.
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MATHEMATICAL PROBLEMS ASSOCIATED WITH THE
ELASTICITY OF LIQUIDS

D. D. Joseph

Department of Aerospace Engineering and Mechanics
University of Minnesota, Minneapolis, MN 55455

This lecture is in three parts:
1. Physical phenomena associated with hyperbolicity and change of type;

2. Conceptual ideas associated with effective viscosities and rigidities and the origins of
viscosity in elasticity;

3. Mathematical problems associated with hyperbolicity and change of type.

The ideas which I will express in this lecture are a very condensed form of ideas which
have been put forward in various papers and most completely in my forthcoming book "Fluid
Dynamics of Viscoelastic Liquids" which is to be published in 1989 by Springer-Verlag. The
mathematical theory of hyperbolicity and change of type is associated with models with an
instantaneous elastic response. Basically, this means that there is no Newtonian like part of the
constitutive equation. The theory for these models as it is presently known is in my book. I
am persuaded that further development of this subject lies in the realm of physics rather than
mathematics. The main issues are centered around the idea of the effective viscosity and
rigidity and the measurements of slow speeds, topics which are discussed in this paper in a
rather more discursive than mathematical manner.

1. Physical phenomena associated with hyperbolicity and change of type

It is well known that small amounts of polymer in a Newtonian liquid can have big
effects on the dynamics of flow. Drag reductions of the order of 80% can be achieved by
adding polymers in concentrations of fifty parts per million to water. This minute addition
does not change the viscosity of the liquid but evidently has a strong effect on other properties
of the liquid which have as yet been inadequately identified.

We are going to consider some effects of adding minute quantities of polyethylene
-oxide to water on the flow over wires. The first experiments were on uniform flow with
velocity U across small wires, flow over a cylinder. James and Acosta [1970] measured the
heat transferred from three wires of diameter D=0.001, 0.002 and 0.006 inches. They used
three different molecular weights of polymers in water (WSR 301, 205 and coagulant) in
concentrations ¢ ranging from 7 parts to 400 parts per million by weight, the range of extreme
dilution, in the drag reduction range. They found a critical velocity U in all cases except the

case of most extreme dilution ¢=6.62 ppm, as is shown in figure 1. A brief summary of the
results apparent in this figure follows.
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Figure 1. Heat transfer from heated wires in the cross-flow of WSR-301 (after James and
Acosta, 1987). The critical U is independent of wire diameter.

1. There is a critica! value Ug for all but the most dilute solutions: When U<Ug, the Nusselt
number Nu(U) increases with U as in a Newtonian fluid. For U>U,, the Nusselt
number becomes independent of U as in figure 1.

2. U is independent of the diameter of the wire. This is remarkable. It suggests that U¢ is a
material parameter depending on the fluid alone.

100
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3. U, is a decreasing function of ¢, the concentration. It is useful to note once again that in the

range of ¢ between 6 ppm to 400 ppm, the viscosity is essentially constant and equal to
the viscosity of water.

Ambeari, Deslouis, and Tribollet [1984] obtained results for the mass transfer from 50
micron wires in a uniform flow of aqueous polyox (coagulant) solution in concentrations of
50, 100, and 200 parts per million. Their results are essentially identical to those obtained by

James and Acosta [1970]; there is a critical U, a decreasing function of ¢, signalling a
qualitative change for the dependence of the mass transport of U, from a Newtonian
dependence when U<Ug, to a U independent value for U>U¢. Their values of U for the break
in the mass transport curve are just about the same as the value of U¢ found by James and
Acosta for heat transfer.

Ultman and Denn [1970] suggested that Uc=c=‘\[ n/Ap where 1 is the viscosity, A the

relaxation time, and p is the density of a fluid whose extra stress T=T+pl satisfies Maxwell's
equation

AUt /3x + T = u[Vu + VuT] )

where u is the velocity. They used the molecular theory of Bueche to find the value of the

relaxation time Ap for the 52.4 ppm solution and they found that a 0.7Ap would give \] 1/0.7A

=U, ~ 2.9 cm/sec., that is, their estimate of A from Bueche's theory is almost good enough to
give c=U.. Their calculation of the time of relaxation cannot be relevant, however, because in

the Bueche theory Ap does not go to zero with the concentration ¢. The zero ¢ value of Ap can
be interpreted as a relaxation time for a single polymer in a sea of solvent. The relaxation time
of one polymer cannot be the relaxation time of the solution in the limit in which the polymer
concentration tends to zero, because in this limit the solution is all solvent.

Joseph, Riccius and Arney [1986] measured c=2.48 cm/sec in a 50 ppm, WSR 301
aqueous solution. This measurement supports the idea that Ug=c. We are trying now to
measure wave speeds in extremely dilute solutions in the drag reduction range. We find
considerable scatter in our data in these low viscosity solutions and are at present uncertain
about the true value of the effective wave speed, including the values which we reported
earlier.

The hypothesis that Ug=c is consistent with the following argument about the
dependence of the wave speed on concentration. In the regime of extreme dilution, the
viscosity does not change with concentration. However, there appears to be a marked effect on
the average time of relaxation which increases with concentration. It follows then that the wave

speed c=\] T/pA must decrease with concentration ¢.

Konuita, Adler and Piau [1980]} studied the flow around a 0.206 mm wire in an
aqueous polyox solution (500 ppm, WSR-301) using laser-Doppler techniques. They found a
kind of shock wave in front of the cylinder, like a bow shock. They say that the velocity of the
fluid is zero in a region fluid in front of the stagnation point. Basically they say that there is no
flow, or very slow flow near the cylinder. The formation of the shock occurs at a certain finite
speed, perhaps Uc. This type of shock is consistent with the other observations in the sense
that with a stagnant region around the cylinder, the transport of heat and mass could take place
only by diffusion, without convection. This explains why there is no dependence of the heat
and mass transfer on the velocity when it exceeds a critical value.
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I estimated the critical speed, using the data of Konuita, Adler and Piau, and I estimated
the wave speed ¢ by extrapolating from our measurements in the polyox solutions at different
concentrations. These estimates are reported in my new book "Fluid Dynamics of Viscoelastic
Liquids." They are consistent with the notion of a supercritical shock transition at Ug=c.

Another striking phenomenon which appears to be associated with a supercritical
transition is delayed die swell. It is well known that polymeric liquid will swell when extruded
from small diameter pipes. The swelling can be very large, four, even five times the diameter
of the jet. This swelling is still not well understood even when there is no delay. Joseph,
Matta and Chen [1987] have carried out experiments on 19 different polymer solutions. They
found that there is a critical value of the extrusion velocity U, such that when U<Uy, the swell
occurs at the exit, but when U>U, the swell is delayed, as in figure 2. If U is taken as the
centerline velocity in the pipe, then the transition is always supercritical with Uc>c, The length
of the delay increases with U. The velocity in the jet after the swell of jet has fully swelled is
subcritical Up<U where Uy is the final U. This is something like a hydraulic jump with
supercritical flow ahead of the delay and subcritical flow behind it.

Figure 2. Delayed die swell.

Yoo and Joseph [1985] studied Poiseuille flow of an upper convected Maxwell model
through a plane channel. Ahrens, Yoo and Joseph [1987] studied the same problem in a round
pipe. In both cases, we get a hyperbolic region of flow in the center of the pipe when the
centerline velocity Up, equal to 2U in the Maxwell model, is greater than the wave speed c.
This gives theoretical support to the idea that delayed die swell is a supercritical phenomenon.

There is a marked difference between the shape of the swell when it is delayed between
different polymer solutions. The shape seems to correlate with a relaxation time

A = /G, 2
where 1 is the zero shear rate viscosity and G is the rigidity. We get G, from measuring ¢
c2=Glp . 3)

When A is large, say A20(10-3 sec), the delay is sharp, as in figure 2. When the relaxation

times are small, A<0(10~4 sec), the delay is smoothed; in the extreme cases it is difficult to see
that the swell is actually delayed.

We can say the Newtonian fluids are fluids with very large values of A. In the case of
delayed die swell, the smoothing of the swell is probably associated by the effect of smoothing
due to an effective viscosity which arises from rapidly relaxing modes which have already
relaxed when the delayed swell commences. Very viscous liquids always exhibit relaxation or
non-Newtonian effects because even though the relaxation is fast, there is so much to relax.



103

14 r
12 * o
Mc = *
10
8 o *
6 °
B °
4 I +
| o
2 r * E a‘ A
I o 3 ;
1 1 1 ]
0
0 1 2 3 4

nozzle diameter (mm)

Figure 3. Mach number vs. pipe diameter.
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In figure 3, we plotted the critical Mach number
M =2Uc/c

against the diameter of the pipe. In all cases M¢21, nearly. The value M¢=1 seems to be some
form of asymptote for large values of the pipe diameter d. We do not understand why different
fluids have such different M vs. d curves. We have thought about the consequences of shear
thinning, which are important for some of the test liquids, in trying to collapse the experimental
curves for different liquids into one curve, but we have not been successful.

2. Conceptual ideas

Nonlinear constitutive modeling is a jungle. The possible responses of the material to
stresses are too complicated to describe by one explicit expression. General expressions are
too abstract to be of direct use and are always insufficiently general to describe everything.
Linearizing around rest is good because many different models collapse to one. The nonlinear
parameters go away. Moreover, the elasticity of liquids is preeminently associated with
propagation of small amplitude waves into rest.

We start with Boltzmann's expression for the extra stress T which has been generalized
to contain a Newtonian term
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(=]

©=2uD [u(x, t)] + 2 | G(s)D[u(x, t-s)]ds 4
0

where u is the velocity, D is the symmetric part of grad u and G(s) is positive, bounded and

monotonically decreasing to zero. The actual stress T=—p1+1 differs from t by a "pressure" p.
Equation (4) is the most general linear functional of grad u in a fluid. To name a fluid, we
need a Newtonian viscosity | and a shear relaxation modulus G(s). We get Jeffreys' model

from (4) when we write G(s)=1)1- exp (-s/A) and Jeffreys' model reduces to Maxwell's if also
pu=0.

Now we consider viscosity. In steady flow, u is independent of t and comes out of the
integral in (4). We get

1 =2{iD[u(x)] ®)

©0

where [i=p1+1 is the static or zero shear viscosity and 1 = [G(s)ds, the area under G(s), is the
0

elastic viscosity. We have a viscosity inequality 7121 with equality when there is no
Newtonian viscosity p=0.

Now we consider elasticity p=0, writing
d
Du(x, t-s)] = — vy E [E(x, t—5)] 6)

where & is a displacement and E is the infinitesimal strain. If it were possible to make a step in

strain without flow, and it isn't possible, we would have D[u(x, t)] = Eq(x)8(t) for Dirac 9.
Then, from (4), with 1=0,

7 =2G(t) Eo(x)

and you can see why G(t) is called the stress relaxation function and G(0) the rigidity or shear
modulus. Another way to see elasticity with =0 is to write

o0

T= 20j - % {GG)E [§ (x, t-s)]}ds + 20j' G°(s)E [& (x, t-s)] ds . )]

Now we can suppose that G(s) decays ever so slowly so that the second integral will tend to
zero while the first gives rise to linear elasticity for an incompressible solid

1 =2G()E [ (x, D]. ®

Now we restore the Newtonian viscosity and we note that this viscosity smooths
discontinuities. For example, in the problem of the suddenly accelerated plate, the boundary at
y=0 below a semi-infinite plate is suddenly put into motion, sliding parallel to itself with a
uniform speed. If u=0, this problem is governed by a telegraph equation. The news of the
change in the boundary value from zero to constant velocity propagates into the interior by a
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damped wave with a velocity c=Y G(0)/p. The amplitude of the velocity shock decays
exponentially. A short while after the wave passes, the solution at the given y looks diffusive.
If u=#0, and is small, a sharp front cannot propagate. Instead we get a shock layer whose

thickness is proportional to \j py/i and the solution, as in the Newtonian fluid, is felt instantly
everywhere. We get a diffusive signal plus a wave. The wave could be dominant in the
dynamics if pt is small.

Actually diffusion is impossible because it requires that a pulse initiated at any point be
felt instantly everywhere. This same defect hold for all models with u=0, like Jeffreys'.
Propagation should proceed as waves.

Poisson, Maxwell, Poynting and others thought that p=0 ultimately. It's all a matter of
time scales. Short range forces between molecules of a liquid give rise to weak clusters of
molecules which resist fast deformations elastically, then relax. Liquids are closer to solids
than to gases. Liquid molecules do not bounce around with a mean free path, they move
cooperatively.

So what is the difference between two liquids with the same M, one appearing viscous
(Newtonian) and the other elastic? Maxwell thought that viscous liquids were actually elastic,
with high rigidity and a single fast time of relaxation. To fix his idea in your mind, we
compare two liquids with the same viscosity T, satisfying Maxwell's model with G(s)=G(0)
exp(—s/A), G(0)=n/A. To have the same 7 the Newtonian liquid would have a relatively large

G(0) and a small time A of relaxation. The trouble with Maxwell's model, if not his idea, is
that a single time of relaxation is against experiments which can never be made to fit a single
time of relaxation.

There are many different times of relaxation. Experiments indicate that many liquids
respond to high frequency ultrasound like a solid organic glass with

G(0) ~ 109Pa, c=\/ G(0)/p ~ 105 coy/sec. )

This type of estimation is valid for a huge range of liquids, from olive oil to high molecular
weight silicon oils. With this time of relaxation and such a high rigidity, all the liquids would

look Newtonian, with t much greater than 11/G(0), which is of the order of 10-10 sec. in olive
oil, and is perhaps 10-6 in some high viscosity silicon oils. In fact, we see much longer lasting
responses which come about because there are different times of relaxation. Small molecules
relax rapidly, giving rise to large rigidity G(0) and fast speed. Large molecules and polymers
relax slowly, giving rise to a smaller effective rigidity G,(0), effective viscosity p and slow

speed

To get this firmly in mind, we can think of a kernel with values like those given by (9),
sketched in figure 4.
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0 G(0)=10°pa

G (0)=1to 105 Pa

A

Figure 4. G(s), fast relaxation (say 10-10 sec) followed by a slow relaxation (say 104 sec).

We may inquire if at t>>10-10 sec the relaxed fast modes have a dynamical effect. Yes, they
give rise to an effective viscosity. We may as well collapse the glassy mode into a one-sided

delta function ud(s) where u=G(0)A1, or some fraction of this. This is our effective viscosity
and our construction shows that is not unique. This is a very interesting concept, but it is not
amenable to experiments that we know.

It is useful to define a time unit in terms of the slowest relaxation, say j1/G¢. This gives
rise to an internal clock, with a material time defined by the slowest relaxation. This time may
be slow or fast on the external clock. To get this idea, think of the analog for the transport of
heat. Heat is transported in solids by fast waves. The fastest wave is associated with electrons
with relaxation times of 10-13 sec, then by lattice waves (phonons) with relaxation times of
10-11 sec. Both times are surpassingly short on our clock. However, at 10-13 sec, the
electrons have all relaxed (and they give rise to diffusion) whilst the phonons have not begun to
relax. Of course, it's more interesting when the slow relaxation is not too fast on our clock, as
is true for viscoelastic fluids.

The notion of an external and internal clock is an appealing idea for expressing the
difference between different theories of fading memory. Some theories, like Maxwell's and
the more mathematical one by Coleman and Noll [1960] use an external clock; in rapid
deformations the fluid responds elastically; in slow deformations the response is viscous. Fast
and slow are measured in our time, on the external clock. Such theories rule out transient
Newtonian responses. Models with p=0, like Jeffreys', or the more mathematical one by Saut
and Joseph [1983], are disallowed. To get 10 back in, even though ultimately u=0, we need
an effective W, associated with an internal clock.

3. Mathematical theory

When the fluid is elastic the governing equations are partly hyperbolic. The hyperbolic
theory makes-sense when the Newtonian viscosity is zero or small relative to the static

viscosity L. For very fast deformations in which the fluid responds momentarily like a glass,
the equations always exhibit properties of hyperbolic response, waves and change of type.
However, the glassy response takes place in times too short to notice. Hence, the hyperbolic
theory is not useful where it is exact. The hyperbolic theory is useful when we get an elastic
response at times we read on our clock, in the domain of the effective theory. Hence, the
hyperbolic theory is useful where it is not exact.
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Most of the mathematical work has been done with fluids like Maxwell's and for plane
flows. These problems are governed by six quasilinear equations in six unknowns. The
unknowns are two velocity components, three components of the stress, and a pressure. The
continuity equation, two momentum equations and three equations for the stress govern the
evolution of the six variables. The stress equations are like Maxwell's

X[%:—I-U'VT +TQ—Q’E——a(D‘C+TD):| =2nD +2

where D is the symmetric part and Q the antisymmetric part of Vu, —~1<a<1 and £ are lower
order terms, algebraic in the system variables. This system may be analyzed for type in the
usual way. We get a 6th order system and it factors into three quadratic roots. Two of the
roots are imaginary so that the system is not hyperbolic. The streamlines are characteristic,
with double roots so that the system is not strictly hyperbolic. The third quadratic factor
depends on the unknown solution, algebraically, and it can be real or complex, depending on
the solution. We say that such a solution with mixed roots is of composite type. Some
variables are elliptic, some are hyperbolic.

It turns out that the pair of roots which depend on the unknown solution and can
change type are associated with the vorticity equation, a second order nonlinear PDE. This
equation is either elliptic or it is hyperbolic, depending on the solution. It is not of composite
type, but is classical, like the equation for the potential in gas dynamics.

We can think of the unsteady vorticity equation and the steady vorticity equation. The
analysis of the two has greatly different consequences. The unsteady equation is ill-posed
when it is elliptic and well-posed when it is hyperbolic. Il-posed problems are catastrophically
unstable to short waves, with growth rates which go to infinity with the wave number. The
conditions on the stress which lead to ill-posed problems can be determined by the method of
frozen coefficients, as was first done by Rutkevich [1969]. It turns out that the Maxwell
models with a=t1 cannot be ill-posed on smooth solutions, but the other models do become ill-
posed for certain flows.

The problem of change of type in steady flow is different. The vorticity in steady flow
can be of mixed type with elliptic and hyperbolic regions, as in transonic flow. The physical
implications of these mixed "transonic" fields are not yet perfectly understood, though many
examples have been calculated.

There are many models, other than those like Maxwell's, in which vorticity is the key
variable. It is the only variable which is either strictly elliptic or strictly hyperbolic. The stream
function satisfies Laplace's equation, the velocity and the stresses are of composite type. The
stresses do not satisfy a hyperbolic equation and it is wrong to speak of the propagation of
stress waves.

There are other models in which the vorticity is not the key variable. However, when
these models are linearized around rest, one finds again that the steady vorticity equation is
either elliptic or hyperbolic, and the unsteady vorticity equation is always hyperbolic. Hence it
is precisely waves of vorticity which propagate into rest.
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Figure 5. Mach wedge for the vorticity, tan o = (1-M2)~1/2,

The mathematical consequences of composite roots are clearly evident in the recent
solution of L. E. Fraenkel [1987] of the problem of linearized supercritical flow over a flat
plate. The linearization here is around the uniform flow which exists at infinity, as in Oseen's
problem for the Navier-Stokes equation. Fraenkel's solution shows that there is a Mach wedge

of vorticity { centered on the leading edge of the plate. The vorticity in front of this wedge is
zero and it is not zero behind the wedge [see figure 5]. Surprisingly, the vorticity jumps from
zero to infinity at the wedge, but the singularity is integrable. We have rotational flow behind

the shock and irrotational flow in front of the shock. The stream function satisfies V2¥=—{
where {=0 in front of the shock. Therefore, we may write ¥=F1+¥,, V2¥=—{, V2¥1=0.
To satisfy the boundary conditions on the plate, we must have a nonzero potential field ¥1. In
fact V1 satisfies a Dirichlet problem for the region outside a strip on the positive x axis.

The potential flow decays to uniform flow as one moves upstream, but the delay is
slow. There is no upstream influence in the fully hyperbolic flow of a gas over a flat plate.
The upstream influence of the flat plate in the flow of a Newtonian fluid is almost negligible.

The persistence of ‘¥ is